cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003590 Rows of Pascal's triangle written as a single number.

Original entry on oeis.org

1, 11, 121, 1331, 14641, 15101051, 1615201561, 172135352171, 18285670562881, 193684126126843691, 1104512021025221012045101, 1115516533046246233016555111, 1126622049579292479249522066121, 11378286715128717161716128771528678131
Offset: 0

Views

Author

Matthew Wells (mwells(AT)nmt.edu)

Keywords

Comments

If n<=500, a(n) is prime only for a(1)=11, a(8)=18285670562881, and a(29). - Enrique Pérez Herrero, Jun 05 2010

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 273.

Crossrefs

Cf. A007318.

Programs

  • Maple
    a:= n-> parse(cat(seq(binomial(n,k), k=0..n))):
    seq(a(n), n=0..15);  # Alois P. Heinz, Jan 15 2024
  • Mathematica
    A003590[i_Integer] := ToExpression[StringJoin[Table[ToString[Binomial[i, j]], {j, 0, i}]]] (* Enrique Pérez Herrero, May 27 2010 *)
    FromDigits[Flatten[IntegerDigits/@#]]&/@Table[Binomial[i,j],{i,0,15},{j,0,i}] (* Harvey P. Dale, Aug 11 2024 *)
  • PARI
    A003590(i)={ my(j,a); a=""; for(j=0,i,a=Str(a,binomial(i,j)) ); return(eval(a)); } /* Enrique Pérez Herrero, Jun 03 2010 */

Formula

a(n) mod 100 = 1 + 10 * (n mod 10). - Enrique Pérez Herrero, May 27 2010

Extensions

Offset 0 from Alois P. Heinz, Jan 15 2024