A003590 Rows of Pascal's triangle written as a single number.
1, 11, 121, 1331, 14641, 15101051, 1615201561, 172135352171, 18285670562881, 193684126126843691, 1104512021025221012045101, 1115516533046246233016555111, 1126622049579292479249522066121, 11378286715128717161716128771528678131
Offset: 0
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 273.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..68
Crossrefs
Cf. A007318.
Programs
-
Maple
a:= n-> parse(cat(seq(binomial(n,k), k=0..n))): seq(a(n), n=0..15); # Alois P. Heinz, Jan 15 2024
-
Mathematica
A003590[i_Integer] := ToExpression[StringJoin[Table[ToString[Binomial[i, j]], {j, 0, i}]]] (* Enrique Pérez Herrero, May 27 2010 *) FromDigits[Flatten[IntegerDigits/@#]]&/@Table[Binomial[i,j],{i,0,15},{j,0,i}] (* Harvey P. Dale, Aug 11 2024 *)
-
PARI
A003590(i)={ my(j,a); a=""; for(j=0,i,a=Str(a,binomial(i,j)) ); return(eval(a)); } /* Enrique Pérez Herrero, Jun 03 2010 */
Formula
a(n) mod 100 = 1 + 10 * (n mod 10). - Enrique Pérez Herrero, May 27 2010
Extensions
Offset 0 from Alois P. Heinz, Jan 15 2024
Comments