cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003643 Number of genera of Q(sqrt(-n)), n squarefree.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 4, 2, 1, 2, 2, 4, 1, 4, 2, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 2, 4, 2, 1, 2, 2, 4, 4, 1, 4, 4, 1, 2, 2, 4, 4, 1, 2, 1, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 1, 8, 2, 1, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 1, 4, 4, 1, 4, 2, 2, 4, 1, 4, 2, 2, 4, 2, 2, 1, 4, 2, 2, 2, 2, 4, 1, 8, 2, 1, 4, 2
Offset: 1

Views

Author

Keywords

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Function[If[Mod[#, 4] == 1, 2^PrimeOmega[#], 2^(PrimeOmega[#] - 1)]] /@ Select[Range[200], SquareFreeQ] (* Jean-François Alcover, Sep 04 2019 *)
  • PARI
    for(n=1, 200, if(issquarefree(n), print1(2^(omega(n*if((-n)%4>1, 4, 1)) - 1), ", "))) \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = 2^(omega(A033197(n)) - 1). - Andrew Howroyd, Jul 24 2018
Let k = A005117(n) be the n-th squarefree number, then a(n) = 2^omega(k) if k == 1 (mod 4) and 2^(omega(k) - 1) otherwise. - Jianing Song, Jul 25 2018