A003654 Squarefree integers m such that the fundamental unit of Q(sqrt(m)) has norm -1. Also, squarefree integers m such that the Pell equation x^2 - m*y^2 = -1 is soluble.
2, 5, 10, 13, 17, 26, 29, 37, 41, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 257, 265, 269, 274, 277, 281, 290, 293, 298, 313, 314, 317, 337, 346, 349, 353, 362
Offset: 1
Keywords
References
- D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
- M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 46.
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 56.
- W. Paulsen, Calkin-Wilf sequences for irrational numbers, Fib. Q., 61:1 (2023), 51-59.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. J. Mathar, Table of n, a(n) for n = 1..9446
- S. R. Finch, Class number theory
- Steven R. Finch, Class number theory [Cached copy, with permission of the author]
- P. Seeling, Ueber die Aufloesung der Gleichung x^2-Ay^2=+-1 in ganzen Zahlen, wo A positiv und kein vollstaendiges Quadrat sein muss, Archiv der Mathematik und Physik, Vol. 52 (1871), p. 40-49.
Programs
-
Maple
isA003654 := proc(n) local cf,p ; if not numtheory[issqrfree](n) then return false; end if; for p in numtheory[factorset](n) do if modp(p,4) = 3 then return false; end if; end do: cf := numtheory[cfrac](sqrt(n),'periodic','quotients') ; type( nops(op(2,cf)),'odd') ; end proc: A003654 := proc(n) option remember; local a; if n = 1 then 2; else for a from procname(n-1)+1 do if isA003654(a) then return a; end if; end do: end if; end proc: seq(A003654(n),n=1..40) ; # R. J. Mathar, Oct 19 2014
-
Mathematica
Reap[For[n = 2, n < 1000, n++, If[SquareFreeQ[n], sol = Solve[x^2 - n y^2 == -1, {x, y}, Integers]; If[sol != {}, Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Mar 24 2020 *)
Extensions
Edited by Max Alekseyev, Mar 17 2010
Comments