cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003716 Expansion of e.g.f. tan(sinh(x)) (odd powers only).

Original entry on oeis.org

1, 3, 37, 1015, 47881, 3459819, 354711853, 48961863007, 8754050024209, 1967989239505875, 543326939019354421, 180718022989699819207, 71275877445849484090393, 32890432371345908634652347, 17555593768891213894861569085
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Tan[ Sinh[ x ] ] (* Odd Part *)
    nn = 20; Table[(CoefficientList[Series[Tan[Sinh[x]], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 16 2015 *)
  • Maxima
    a(n):=sum(((-1)^(k-1)+1)/(2^k*k!)*sum((-1)^i*(k-2*i)^n*binomial(k,i),i,0,k)*(sum(j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k,j),j,1,k)),k,1,n); /* Vladimir Kruchinin, Apr 20 2011 */

Formula

a(n) = Sum_{k=1..n} ((-1)^(k-1)+1)/(2^k*k!) * ( Sum_{i=0..k} (-1)^i*(k-2*i)^n *binomial(k,i) ) * ( Sum_{j=1..k} j! * 2^(k-j-1) * (-1)^((k+1)/2+j) * stirling2(k,j) ). - Vladimir Kruchinin, Apr 20 2011
a(n) ~ 4 * (2*n+1)! / (sqrt(4+Pi^2) * (log((Pi + sqrt(4+Pi^2))/2))^(2*n+2)). - Vaclav Kotesovec, Feb 16 2015