cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003721 Expansion of e.g.f. tan(tanh(x)) (odd powers only).

Original entry on oeis.org

1, 0, -8, 112, -128, -109824, 8141824, -353878016, -9666461696, 5151942574080, -825073851170816, 76429076694827008, 2051308253366714368, -2361338488910424047616, 171581865952588387581952
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Tan[Tanh[x]],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Nov 05 2011 *)
  • Maxima
    a(n):=sum(((sum(j!*2^(2*i+1-j-1)*(-1)^(i+j+1)*stirling2(2*i+1,j),j,1,2*i+1))*sum(binomial(k-1,2*i)*k!*(-1)^(1+k)*2^(2*n-k-1)*stirling2(2*n-1,k),k,2*i+1,2*n-1))/(2*i+1)!,i,0,(n-1)); /* Vladimir Kruchinin, Jun 10 2011 */

Formula

a(n) = Sum_{i=0..(n-1)} ( ( Sum_{j=1..2*i+1} j!*2^(2*i+1-j-1)*(-1)^(i+j+1)*Stirling2(2*i+1,j) ) * Sum_{k=2*i+1..2*n-1} binomial(k-1,2*i)*k!*(-1)^(1+k)*2^(2*n-k-1)*Stirling2(2*n-1,k) )/(2*i+1)!. - Vladimir Kruchinin, Jun 10 2011

A296678 Expansion of e.g.f. arctanh(arcsin(x)) (odd powers only).

Original entry on oeis.org

1, 3, 53, 2303, 185033, 23756667, 4457821821, 1150764459063, 391167511473681, 169370797497060339, 91013260219635394629, 59435772666287730632559, 46362471059282707504957401, 42577231265939498962852834155, 45471686987452309473064526678925
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2017

Keywords

Examples

			arctanh(arcsin(x)) = x/1! + 3*x^3/3! + 53*x^5/5! + 2303*x^7/7! + 185033*x^9/9! + 23756667*x^11/11! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[ArcTanh[ArcSin[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
    nmax = 15; Table[(CoefficientList[Series[Log[1 - I Log[I x + Sqrt[1 - x^2]]]/2 - Log[1 + I Log[I x + Sqrt[1 - x^2]]]/2, {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

E.g.f.: arctan(arcsinh(x)) (odd powers only, absolute values).
E.g.f.: log(1 - i*log(i*x + sqrt(1 - x^2)))/2 - log(1 + i*log(i*x + sqrt(1 - x^2)))/2, where i is the imaginary unit (odd powers only).
Showing 1-2 of 2 results.