A296467
Expansion of e.g.f. arctan(arctanh(x)) (odd powers only).
Original entry on oeis.org
1, 0, 8, 112, 8192, 599808, 80010240, 13537247232, 3160676007936, 929451393220608, 343173318976733184, 154043745649772986368, 82935056810462020632576, 52660879605487383997317120, 38970318170642827020431523840, 33236188662933234332228627988480, 32365907321554306913981616441262080
Offset: 0
arctan(arctanh(x)) = x/1! + 8*x^5/5! + 112*x^7/7! + 8192*x^9/9! + 599808*x^11/11! + 80010240*x^13/13! + ...
-
S:= series(arctan(arctanh(x)),x,52):
seq(coeff(S,x,2*i+1)*(2*i+1)!,i=0..25); # Robert Israel, Dec 13 2017
-
nmax = 17; Table[(CoefficientList[Series[ArcTan[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
nmax = 17; Table[(CoefficientList[Series[I (Log[2 + I Log[1 - x] - I Log[1 + x]] - Log[2 - I Log[1 - x] + I Log[1 + x]])/2, {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
A296853
Expansion of e.g.f. tanh(x*tan(x/2)) (even powers only).
Original entry on oeis.org
0, 1, 1, -27, -403, 8345, 688473, -208019, -3189211931, -162605047455, 28806493001105, 5257860587364341, -288068264497990179, -230932276247139756887, -14420179324444754436023, 13944106915630111553887485, 3643613240568912544562868053
Offset: 0
tanh(x*tan(x/2)) = x^2/2! + x^4/4! - 27*x^6/6! - 403*x^8/8! + 8345*x^10/10! + ...
-
nmax = 16; Table[(CoefficientList[Series[Tanh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A003716
Expansion of e.g.f. tan(sinh(x)) (odd powers only).
Original entry on oeis.org
1, 3, 37, 1015, 47881, 3459819, 354711853, 48961863007, 8754050024209, 1967989239505875, 543326939019354421, 180718022989699819207, 71275877445849484090393, 32890432371345908634652347, 17555593768891213894861569085
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Tan[ Sinh[ x ] ] (* Odd Part *)
nn = 20; Table[(CoefficientList[Series[Tan[Sinh[x]], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 16 2015 *)
-
a(n):=sum(((-1)^(k-1)+1)/(2^k*k!)*sum((-1)^i*(k-2*i)^n*binomial(k,i),i,0,k)*(sum(j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k,j),j,1,k)),k,1,n); /* Vladimir Kruchinin, Apr 20 2011 */
A013524
Numerator of [x^(2n+1)] of the Taylor expansion tanh(cosec(x) - cot(x)).
Original entry on oeis.org
1, 0, -1, -1, -1, 13, 7951, 21599, -294997, -275833, -60527057, -6338125867, 37620769159, 10425684579701, 5113538085001361, -25594556368763237, -6013201989263028181, -3771502911169983097219, 18335649295377317231411, 669255665793644548301365603
Offset: 0
Patrick Demichel (patrick.demichel(AT)hp.com)
Series starts: x/2 - x^5/480 - x^7/5760 - x^9/1451520 + 13*x^11/9676800 + 7951*x^13/49816166400 + ...
-
ser := series(tanh(tan(x/2)), x, 40):
seq(numer(coeff(ser, x, 2*n+1)), n=0..19); # Peter Luschny, Nov 14 2016
-
Numerator[Take[CoefficientList[Series[Tanh[Csc[x] - Cot[x]], {x,0,40}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 12 2016 *)
A296791
Expansion of e.g.f. sech(x*sec(x)) (even powers only).
Original entry on oeis.org
1, -1, -7, -1, 3121, 132959, -1261591, -889217057, -79029091743, 5889540654911, 3289057601679065, 395957721046153023, -120519140613246313327, -71865162873642033099361, -9267049529998625177827639, 8376363338336819515365004319, 5693280488360087435524724806849
Offset: 0
sech(x*sec(x)) = 1 - x^2/2! - 7*x^4/4! - x^6/6! + 3121*x^8/8! + ...
Cf.
A000364,
A003721,
A003722,
A009008,
A009009,
A009010,
A009011,
A009015,
A009016,
A009118,
A009562,
A009765,
A102072,
A102075,
A296731,
A296740,
A296790.
-
nmax = 16; Table[(CoefficientList[Series[Sech[x Sec[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
Showing 1-5 of 5 results.
Comments