cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003720 Expansion of e.g.f. tan(tan(tan(x))).

Original entry on oeis.org

1, 6, 168, 10672, 1198080, 208521728, 51874413568, 17449541107712, 7622674735988736, 4193561606973095936, 2836052065377836597248, 2312174256451088534208512, 2236165580390456719589769216, 2530976708469616321520834969600, 3314110602212685014002135203840000
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Rest@ Union[ Range[0, 25]! CoefficientList[ Series[Tan@ Tan@ Tan@ x, {x, 0, 25}], x]] (* Robert G. Wilson v *)
  • Maxima
    a(n):=b(2*n+1); b(n):=sum((((-1)^(m-1)+1)*(sum(j!*2^(m-j-1)* (-1)^((m+1)/2+j) *stirling2(m,j), j,1,m))*sum((((-1)^(k-m)+1)*(sum(binomial(j-1,m-1)* j!*2^(k-j-1)*stirling2(k,j)*(-1)^((m+k)/2+j), j,m,k))*((-1)^(n-k)+1)* sum(binomial(j-1,k-1)*j!*2^(n-j-1)* (-1)^((n+k)/2+j)* stirling2(n,j) ,j,k,n))/k!,k,m,n))/m!, m,1,n); /* Vladimir Kruchinin, Apr 23 2011 */
    
  • PARI
    x='x+O('x^66); /* that many terms */
    serlaplace(tan(tan(tan(x)))) /* show terms */ /* Joerg Arndt, Apr 26 2011 */

Formula

a(n) = b(2*n+1) where b(n) = sum(m=1..n, (((-1)^(m-1)+1)*(sum(j=1..m, j! *2^(m-j-1)*(-1)^((m+1)/2+j)*S2(m,j)))*sum(k=m..n,(((-1)^(k-m)+1)*(sum(j=m..k, C(j-1,m-1)*j!*2^(k-j-1)*S2(k,j)*(-1)^((m+k)/2+j)))*((-1)^(n-k)+1)* sum(j=k,n, C(j-1,k-1)*j!*2^(n-j-1)* (-1)^((n+k)/2+j)* S2(n,j)))/k!))/m!). - Vladimir Kruchinin, Apr 23 2011
a(n) ~ 8*(2*n+1)!/((4+Pi^2) * (1+arctan(Pi/2)^2) * (arctan(arctan(Pi/2)))^(2*n+2)). - Vaclav Kotesovec, Feb 16 2015

Extensions

Extended and formatted Mar 15 1997 by Olivier Gérard
Corrected definition, Joerg Arndt, Apr 26 2011
a(13)-a(14) from Alois P. Heinz, May 13 2012