cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003773 Number of spanning trees in K_4 X P_n.

Original entry on oeis.org

16, 3456, 686000, 135834624, 26894628304, 5325000912000, 1054323287943536, 208750686023540736, 41331581509440922000, 8183444388183674181504, 1620280657278860350213424, 320807386696826179092096000
Offset: 1

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Programs

  • Mathematica
    LinearRecurrence[{204, -1190, 204, -1},{16, 3456, 686000, 135834624},12] (* Ray Chandler, Aug 11 2015 *)

Formula

a(1) = 16,
a(2) = 3456,
a(3) = 686000,
a(4) = 135834624,
a(5) = 26894628304 and
a(n) = 205a(n-1) - 1394a(n-2) + 1394a(n-3) - 205a(n-4) + a(n-5).
a(n) = 204*a(n-1) - 1190*a(n-2) + 204*a(n-3) - a(n-4). - Paul Raff, Jun 04 2008
G.f.: 16x(1+12x+x^2)/((1-6x+x^2)(x^2-198x+1)). a(n) = 35*A097731(n-1)/2 - 3*A001109(n)/2. - R. J. Mathar, Dec 16 2008
a(n)=16*(A001109(n))^3=16*A001109(n)*A001110(n). [R. Guy, seqfan list, Mar 28 2009] - R. J. Mathar, Jun 03 2009

Extensions

More terms from Paul Raff, Jun 04 2008
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009