A003824 Numbers that are the sum of two 4th powers in more than one way (primitive solutions).
635318657, 3262811042, 8657437697, 68899596497, 86409838577, 160961094577, 2094447251857, 4231525221377, 26033514998417, 37860330087137, 61206381799697, 76773963505537, 109737827061041, 155974778565937
Offset: 1
Keywords
References
- L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 644-7, Chelsea NY 1923.
- R. K. Guy, Unsolved Problems in Number Theory, D1.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, p. 191.
Links
- D. Wilson, Table of n, a(n) for n = 1..516 [The b-file was computed from Bernstein's list]
- D. J. Bernstein, List of 516 primitive solutions p^4 + q^4 = r^4 + s^4 = a(n)
- D. J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d)
- D. J. Bernstein, sortedsums (contains software for computing this and related sequences)
- Leonhard Euler, Resolutio formulae diophanteae ab(maa+nbb)=cd(mcc+ndd) per numeros rationales, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, Vol. 13 (1802), pp. 45-63. See p. 47.
- John Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
- Carlos Rivera, Puzzle 103. N = a^4+b^4 = c^4+d^4, The Prime Puzzles and Problems Connection.
- E. Rosenstiel et al., The Four Least Solutions in Distinct Positive Integers of the Diophantine Equation s = x^3 + y^3 = z^3 + w^3 = u^3 + v^3 = m^3 + n^3, Instit. of Mathem. and Its Applic. Bull. Jul 27 (pp. 155-157) 1991.
- Eric Weisstein's World of Mathematics, Diophantine equations, 4th powers
Crossrefs
Cf. A018786.
Extensions
More terms from David W. Wilson, Aug 15 1996
Comments