cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A088867 Nonsquarefree elements of A003824, i.e., primitive solutions to a^4 + b^4 = c^4 + d^4 with nonsquarefree value on both sides of the equation.

Original entry on oeis.org

680914892583617, 55683917506335026, 2056314197022256097, 3267700501872475297, 4544031582110882417, 10555434261160919777, 12361929340136667457, 23076050051029379057, 335875812638910622082
Offset: 1

Views

Author

Cino Hilliard, Nov 26 2003

Keywords

Comments

Original definition was: Numbers that can be expressed as the sum of two distinct 4th powers in exactly two distinct ways that have at least one repeated factor.
Among the first 516 terms of A003824, there are 31 nonsquarefree terms. None of these are expressible in more than 2 ways as sum of two 4th powers. However, some of them, as 4544031582110882417, 12361929340136667457, 335875812638910622082, ..., have gcd(a,b) > 1, for one of the decompositions a^4 + b^4. - M. F. Hasler, Mar 05 2012

Examples

			a(1) = A003824(18) = 680914892583617 = 17^2*89*61657*429361 is the first nonsquarefree term of A003824. - _M. F. Hasler_, Mar 05 2012
		

Crossrefs

Programs

  • PARI
    \ begin a new session and type \r x4data.txt (evaluated Bernstein data) This will allow using %1 as the initial value. omegax4py42(n) = { for (i = 1, n, x = eval( Str("%", i) ); y=omega(x); y1 =bigomega(x); if(y<>y1,print1(x",")) ) }
    
  • PARI
    select(A003824, t->!issquarefree(t))  \\ M. F. Hasler, Mar 05 2012

Formula

omega(n)<>bigomega(n) for n = a^4+b^4 = c^4+d^4 for distinct a, b, c, d. n=635318657, 3262811042, ..., 680914892583617, ..., 962608047985759418078417, ...

A018786 Numbers that are the sum of two 4th powers in more than one way.

Original entry on oeis.org

635318657, 3262811042, 8657437697, 10165098512, 51460811217, 52204976672, 68899596497, 86409838577, 138519003152, 160961094577, 162641576192, 264287694402, 397074160625, 701252453457, 823372979472, 835279626752
Offset: 1

Views

Author

Keywords

Comments

Since 4th powers are squares, this is a subsequence of A024508, the analog for squares. Sequence A001235 is the analog for third powers (taxicab numbers). Sequence A255351 lists max {a,b,c,d} where a^4 + b^4 = c^4 + d^4 = a(n), while A255352 lists the whole quadruples (a,b,c,d). - M. F. Hasler, Feb 21 2015

Examples

			a(1) = 59^4 + 158^4 = 133^4 + 134^4.
a(2) = 7^4 + 239^4 = 157^4 + 227^4. Note the remarkable coincidence that here all of {7, 239, 157, 227} are primes. The next larger solution with this property is 17472238301875630082 = 62047^4 + 40351^4 = 59693^4 + 46747^4. - _M. F. Hasler_, Feb 21 2015
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Subsequence of A003336 (and hence A004831) and A024508 (and hence A001481).

Programs

  • Mathematica
    Select[ Split[ Sort[ Flatten[ Table[x^4 + y^4, {x, 1, 1000}, {y, 1, x}]]]], Length[#] > 1 & ][[All, 1]] (* Jean-François Alcover, Jul 26 2011 *)
  • PARI
    n=4;L=[];for(b=1,999,for(a=1,b,t=a^n+b^n;for(c=a+1,sqrtn(t\2,n),ispower(t-c^n,n)||next;print1(t",")))) \\ M. F. Hasler, Feb 21 2015
    
  • PARI
    list(lim)=my(v=List()); for(a=134,sqrtnint(lim,4)-1, my(a4=a^4); for(b=sqrtnint((4*a^2 + 6*a + 4)*a,4)+1,min(sqrtnint(lim-a4,4),a), my(t=a4+b^4); for(c=a+1,sqrtnint(lim,4), if(ispower(t-c^4,4), listput(v,t); break)))); Set(v) \\ Charles R Greathouse IV, Jul 12 2024

Formula

A weak lower bound: a(n) >> n^2. - Charles R Greathouse IV, Jul 12 2024

A343077 a(n) is the smallest number that is the sum of n positive 4th powers in two ways.

Original entry on oeis.org

635318657, 2673, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292
Offset: 2

Views

Author

Sean A. Irvine, Apr 04 2021

Keywords

Comments

This is r(n,4,2) in Alter's notation.

Examples

			a(2) = 635318657 = 59^4 + 158^4 = 133^4 + 134^4.
a(3) = 2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4.
		

Crossrefs

Formula

a(n) = n + 240 for n >= 16.

A230562 Smallest number that is the sum of 2 positive 4th powers in >= n ways.

Original entry on oeis.org

0, 2, 635318657
Offset: 0

Views

Author

Jonathan Sondow, Oct 25 2013

Keywords

Comments

Hardy and Wright say that a(3) is unknown.
Guy, 2004: "Euler knew that 635318657 = 133^4 + 134^4 = 59^4 + 158^4, and Leech showed this to be the smallest example. No one knows of three such equal sums."

Examples

			0 = (empty sum).
2 = 1^4 + 1^4.
635318657 = 59^4 + 158^4 = 133^4 + 134^4.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, 2008; section 21.11.

Crossrefs

A088728 p such that p^4 + q^4 = r^4 + s^4 = a(n).

Original entry on oeis.org

158, 239, 292, 502, 542, 631, 1203, 1381, 2189, 2461, 2797, 2949, 3190, 3494, 3537, 4849, 4883, 5053, 6140, 6619, 6730, 6761, 7557, 7604, 8912, 8961, 9018, 9043, 9109, 9253, 9289, 9316, 9733, 10142, 10409, 10652, 11515, 12231, 12234, 12653, 13472
Offset: 1

Views

Author

Cino Hilliard, Nov 22 2003

Keywords

Crossrefs

A088848 Number of prime factors, without multiplicity, of numbers that can be expressed as the sum of two distinct 4th powers in exactly two distinct ways.

Original entry on oeis.org

4, 4, 4, 4, 3, 4, 4, 4, 6, 4, 5, 6, 4, 4, 7, 4, 7, 4, 3, 5, 6, 5, 6, 5, 6, 4, 5, 5, 6, 5, 4, 5, 4, 4, 6, 6, 6, 6, 6, 6, 5, 5, 6, 5, 6, 6, 6, 5, 7, 5, 6, 4, 5, 6, 6, 6, 5, 6, 5, 6, 4, 6, 4, 7, 6, 7, 5, 4, 5, 4, 5, 4, 6, 6, 5, 6, 5, 6, 5, 7, 4, 5, 6, 4, 6, 4, 6, 4, 5, 5, 9, 5, 5, 6, 6, 5, 3, 4, 5, 5
Offset: 1

Views

Author

Cino Hilliard, Nov 24 2003

Keywords

Examples

			3262811042 = 2*113*2953*4889. Thus 4 is the first entry.
		

Crossrefs

Cf. A003824.

Programs

  • PARI
    \ begin a new session and (back slash)r x4data.txt (evaluated Bernstein data) \ to the gp session. This will allow using %1 as the initial value. omegax4py42(n) = { for (i = 1, n, x = eval( Str("%", i) ); y=omega(x); print(y",") ) }

Formula

Omega(n) for n = a^4+b^4 = c^4+d^4 for distinct a, b, c, d. n=635318657, 3262811042, .., 960213785093149760746642, 962608047985759418078417

A088849 Number of prime factors, with multiplicity, of numbers that can be expressed as the sum of two distinct 4th powers in exactly two distinct ways.

Original entry on oeis.org

4, 4, 4, 4, 3, 4, 4, 4, 6, 4, 5, 6, 4, 4, 7, 5, 7, 4, 3, 5, 6, 5, 6, 5, 6, 4, 5, 5, 6, 5, 4, 5, 4, 4, 6, 6, 6, 6, 6, 6, 5, 5, 6, 5, 6, 6, 7, 5, 7, 5, 6, 4, 5, 6, 6, 6, 5, 6, 5, 6, 4, 6, 4, 7, 6, 7, 5, 4, 5, 4, 5, 4, 6, 6, 5, 6, 6, 6, 5, 7, 4, 5, 6, 4, 6, 5, 6, 4, 5, 8, 9, 5, 5, 6, 6, 5, 3, 5, 8, 5, 7, 5, 7, 6, 4
Offset: 1

Views

Author

Cino Hilliard, Nov 24 2003

Keywords

Examples

			The 16th entry in the Bernstein Evaluation =
680914892583617 = 17*17*89*61657*429361 = 5 factors. 5 is the 16th entry in the sequence.
		

Crossrefs

Cf. A003824.

Programs

  • PARI
    \ begin a new session and (back slash)r x4data.txt (evaluated Bernstein data) \ to the gp session. This will allow using %1 as the initial value. bigomegax4py42(n) = { for (i = 1, n, x = eval( Str("%", i) ); y=bigomega(x); print(y",") ) }

Formula

Bigomega(n) for n = a^4+b^4 = c^4+d^4 for distinct a, b, c, d. n=635318657, 3262811042, .., 680914892583617, .., 962608047985759418078417

A175372 Number of integer pairs (x,y) satisfying x^4 + y^4 = n.

Original entry on oeis.org

1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

A 4th-power variant of A004018 and A175362.
a(n) is nonzero when n appears in A004831. a(n) > 8 when n appears in A003824. - Mason Korb, Oct 06 2018

Crossrefs

Cf. A003824, A004831 (where a(n) is nonzero).

Programs

  • Magma
    m:=120; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*(&+[x^(j^4): j in [1..50]]))^2)); // G. C. Greubel, Oct 06 2018
  • Maple
    seq(coeff(series((1+2*add(x^(j^4),j=1..n))^2,x,n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    CoefficientList[Series[(1 + 2*Sum[x^(j^4), {j, 1, 100}])^2, {x, 0, 120}], x] (* G. C. Greubel, Oct 06 2018 *)
  • PARI
    x='x+O('x^120); Vec((1+2*sum(j=1,50, x^(j^4)))^2) \\ G. C. Greubel, Oct 06 2018
    

Formula

G.f.: (1 + 2*Sum_{j>=1} x^(j^4))^2.

A088665 q such that p^4 + q^4 = r^4 + s^4 = a(n).

Original entry on oeis.org

59, 7, 193, 271, 103, 222, 76, 878, 1324, 1042, 248, 1034, 1577, 1623, 661, 3364, 2694, 604, 2027, 274, 2707, 498, 1259, 5181, 1657, 6262, 4903, 5098, 635, 1104, 1142, 173, 5452, 3401, 5277, 3779, 3644, 2903, 1525, 1149, 5121, 5526, 6470, 6496, 261, 581
Offset: 1

Views

Author

Cino Hilliard, Nov 23 2003

Keywords

Crossrefs

A008923 Euler's family of solutions to n = x^4 + y^4 = z^4 + w^4.

Original entry on oeis.org

90239171293339457, 43217672330080936976, 6822171645549542113537, 497455247066570553051152, 20549128177340906621890817, 24223393095189686902587392, 549140647573975773898200592
Offset: 1

Views

Author

Keywords

References

  • Mordell, Diophantine Equations, 1969, p. 90.

Crossrefs

Cf. A003824.

Programs

  • Maple
    Set x := a^7+a^5*b^2-2*a^3*b^4+3*a^2*b^5+a*b^6; y := a^6*b-3*a^5*b^2-2*a^4*b^3+a^2*b^5+b^7; z := a^7+a^5*b^2-2*a^3*b^4-3*a^2*b^5+a*b^6; w := a^6*b+3*a^5*b^2-2*a^4*b^3+a^2*b^5+b^7; then x^4+y^4=z^4+w^4.
Showing 1-10 of 11 results. Next