A001235
Taxi-cab numbers: sums of 2 cubes in more than 1 way.
Original entry on oeis.org
1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977
Offset: 1
4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
- R. K. Guy, Unsolved Problems in Number Theory, Section D1.
- G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
- Ya. I. Perelman, Algebra can be fun, pp. 142-143.
- H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.
- Shahar Amitai, Table of n, a(n) for n = 1..30000 (terms a(1)-a(4724) from T. D. Noe, terms a(4725)-a(10000) from Zak Seidov).
- Shahar Amitai, Python code to generate all taxicab numbers up to N.
- J. Charles-É, Recreomath, Ramanujan's Number.
- A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
- Henk Koppelaar, Peyman Nasehpour, and Maarten Looijen, Symmetry between Series if Entangled by Sums, Preprints.org, 2024.
- Istanbul Bilgi University, Ramanujan and Hardy's Taxi
- Christopher Lane, The First ten Ta(2) and their double distinct cubic sums representations, Find Ramanujan's Taxi Number using JavaScript. [WayBack Machine copy]
- J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
- J. Loy, The Hardy-Ramanujan Number.
- Mia Muessig, Julia code for finding general taxicab numbers
- Ken Ono and Sarah Trebat-Leder, The 1729 K3 surface, arXiv:1510.00735 [math.NT], 2015.
- Eric Weisstein's World of Mathematics, Cubic Number
- Eric Weisstein's World of Mathematics, Diophantine Equation 3rd Powers
- Eric Weisstein's World of Mathematics, Taxicab Number
- D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
Solutions in greater numbers of ways:
-
Select[Range[750000],Length[PowersRepresentations[#,2,3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
-
is(n)=my(t);for(k=ceil((n/2)^(1/3)),(n-.4)^(1/3),if(ispower(n-k^3,3),if(t,return(1),t=1)));0 \\ Charles R Greathouse IV, Jul 15 2011
-
T=thueinit(x^3+1,1);
is(n)=my(v=thue(T,n)); sum(i=1,#v,v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016
A003824
Numbers that are the sum of two 4th powers in more than one way (primitive solutions).
Original entry on oeis.org
635318657, 3262811042, 8657437697, 68899596497, 86409838577, 160961094577, 2094447251857, 4231525221377, 26033514998417, 37860330087137, 61206381799697, 76773963505537, 109737827061041, 155974778565937
Offset: 1
- L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 644-7, Chelsea NY 1923.
- R. K. Guy, Unsolved Problems in Number Theory, D1.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, p. 191.
- D. Wilson, Table of n, a(n) for n = 1..516 [The b-file was computed from Bernstein's list]
- D. J. Bernstein, List of 516 primitive solutions p^4 + q^4 = r^4 + s^4 = a(n)
- D. J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d)
- D. J. Bernstein, sortedsums (contains software for computing this and related sequences)
- Leonhard Euler, Resolutio formulae diophanteae ab(maa+nbb)=cd(mcc+ndd) per numeros rationales, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, Vol. 13 (1802), pp. 45-63. See p. 47.
- John Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
- Carlos Rivera, Puzzle 103. N = a^4+b^4 = c^4+d^4, The Prime Puzzles and Problems Connection.
- E. Rosenstiel et al., The Four Least Solutions in Distinct Positive Integers of the Diophantine Equation s = x^3 + y^3 = z^3 + w^3 = u^3 + v^3 = m^3 + n^3, Instit. of Mathem. and Its Applic. Bull. Jul 27 (pp. 155-157) 1991.
- Eric Weisstein's World of Mathematics, Diophantine equations, 4th powers
A309762
Numbers that are the sum of 3 nonzero 4th powers in more than one way.
Original entry on oeis.org
2673, 6578, 16562, 28593, 35378, 42768, 43218, 54977, 94178, 105248, 106353, 122018, 134162, 137633, 149058, 171138, 177042, 178737, 181202, 195122, 195858, 198497, 216513, 234273, 235298, 235553, 264113, 264992, 300833, 318402, 318882, 324818, 334802, 346673
Offset: 1
2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4, so 2673 is in the sequence.
-
N:= 10^6: # for terms <= N
V:= Vector(N,datatype=integer[4]):
for a from 1 while a^4 <= N do
for b from 1 to a while a^4+b^4 <= N do
for c from 1 to b do
v:= a^4+b^4+c^4;
if v > N then break fi;
V[v]:= V[v]+1
od od od:
select(i -> V[i]>1, [$1..N]); # Robert Israel, Aug 19 2019
-
Select[Range@350000, Length@Select[PowersRepresentations[#, 3, 4], ! MemberQ[#, 0] &] > 1 &]
A309763
Numbers that are the sum of 4 nonzero 4th powers in more than one way.
Original entry on oeis.org
259, 2674, 2689, 2754, 2929, 3298, 3969, 4144, 4209, 5074, 6579, 6594, 6659, 6769, 6834, 7203, 7874, 8194, 8979, 9154, 9234, 10113, 10674, 11298, 12673, 12913, 13139, 14674, 14689, 14754, 16563, 16578, 16643, 16818, 17187, 17234, 17299, 17314, 17858, 18963, 19699
Offset: 1
259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4, so 259 is in the sequence.
-
N:= 10^5: # for terms <= N
V:= Vector(N, datatype=integer[4]):
for a from 1 while a^4 <= N do
for b from 1 to a while a^4+b^4 <= N do
for c from 1 to b while a^4 + b^4+ c^4 <= N do
for d from 1 to c do
v:= a^4+b^4+c^4+d^4;
if v > N then break fi;
V[v]:= V[v]+1
od od od od:
select(i -> V[i]>1, [$1..N]); # Robert Israel, Oct 07 2019
-
Select[Range@20000, Length@Select[PowersRepresentations[#, 4, 4], ! MemberQ[#, 0] &] > 1 &]
A016078
Smallest number that is sum of 2 positive n-th powers in 2 different ways.
Original entry on oeis.org
4, 50, 1729, 635318657
Offset: 1
4 = 1^1 + 3^1 = 2^1 + 2^1;
50 = 1^2 + 7^2 = 5^2 + 5^2,
1729 = 1^3 + 12^3 = 9^3 + 10^3;
635318657 = 59^4 + 158^4 = 133^4 + 134^4 = A018786(1).
-
(* This is just an empirical verification *) Do[max = 4 + n^4; Clear[cnt]; cnt[] = 0; smallest = Infinity; Do[ cnt[an = x^n + y^n] += 1; If[cnt[an] == 2 && an < smallest, smallest = an], {x, 1, max}, {y, x, max}]; Print["a(", n, ") = ", smallest], {n, 1, 4}] (* _Jean-François Alcover, Aug 13 2013 *)
A230562
Smallest number that is the sum of 2 positive 4th powers in >= n ways.
Original entry on oeis.org
0, 2, 635318657
Offset: 0
0 = (empty sum).
2 = 1^4 + 1^4.
635318657 = 59^4 + 158^4 = 133^4 + 134^4.
- R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, 2008; section 21.11.
A255351
Values of b = max {a,b,c,d} for solutions to a^4 + b^4 = c^4 + d^4, a < c < d < b, ordered by size of b.
Original entry on oeis.org
158, 239, 292, 316, 474, 478, 502, 542, 584, 631, 632, 717, 790, 876, 948, 956, 1004, 1084, 1106, 1168, 1195, 1203, 1262, 1264, 1381, 1422, 1434, 1460, 1506, 1580, 1626, 1673, 1738, 1752, 1893, 1896, 1912
Offset: 1
The quadruples [a,b,c,d] are, listed in order of increasing b = max{a,b,c,d}:
[59, 158, 133, 134], [7, 239, 157, 227], [193, 292, 256, 257], [118, 316, 266, 268], [177, 474, 399, 402], [14, 478, 314, 454], [271, 502, 298, 497], [103, 542, 359, 514], [386, 584, 512, 514], [222, 631, 503, 558], [236, 632, 532, 536], [21, 717, 471, 681], [295, 790, 665, 670], [579, 876, 768, 771], [354, 948, 798, 804], [28, 956, 628, 908], ...
-
{n=4;for(b=1,1999,for(a=1,b,t=a^n+b^n;for(c=a+1,sqrtn(t\2,n),ispower(t-c^n,n)||next;print1(b",");next(3))))}
A255352
List of quadruples (a,b,c,d) with a^4 + b^4 = c^4 + d^4, a < c < d < b, listed in order of the largest term b.
Original entry on oeis.org
59, 158, 133, 134, 7, 239, 157, 227, 193, 292, 256, 257, 118, 316, 266, 268, 177, 474, 399, 402, 14, 478, 314, 454, 271, 502, 298, 497, 103, 542, 359, 514, 386, 584, 512, 514, 222, 631, 503, 558, 236, 632, 532, 536, 21, 717, 471, 681, 295, 790, 665, 670, 579, 876, 768, 771
Offset: 1
The quadruples [a,b,c,d] are, listed in order of increasing b = max{a,b,c,d}:
[59, 158, 133, 134], [7, 239, 157, 227], [193, 292, 256, 257], [118, 316, 266, 268], [177, 474, 399, 402], [14, 478, 314, 454], [271, 502, 298, 497], [103, 542, 359, 514], [386, 584, 512, 514], [222, 631, 503, 558], [236, 632, 532, 536], [21, 717, 471, 681], [295, 790, 665, 670], [579, 876, 768, 771], [354, 948, 798, 804], [28, 956, 628, 908], ...
-
{n=4;for(b=1,999,for(a=1,b,t=a^n+b^n;for(c=a+1,sqrtn(t\2,n),ispower(t-c^n,n)||next;print1([a,b,c,round(sqrtn(t-c^n,n))]","))))}
A366703
List of quadruples (a,b,c,d) with a^4 + b^4 = c^4 + d^4, a < c < d < b, a,b,c,d prime, listed in order of the largest term b.
Original entry on oeis.org
7, 239, 157, 227, 40351, 62047, 46747, 59693
Offset: 1
The quadruples (a,b,c,d), listed in order of increasing b = max{a,b,c,d}, are
(7, 239, 157, 227),
(40351, 62047, 46747, 59693), ...
Showing 1-9 of 9 results.
Comments