A230563 Smallest number that is the sum of three positive n-th powers in at least two ways.
5, 27, 251, 2673, 1375298099, 160426514
Offset: 1
Examples
5 = 1^1 + 1^1 + 3^1 = 1^1 + 2^1 + 2^1. 27 = 1^2 + 1^2 + 5^2 = 3^2 + 3^2 + 3^2. 251 = 1^3 + 5^3 + 5^3 = 2^3 + 3^3 + 6^3. 2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4. 1375298099 = 3^5 + 54^5 + 62^5 = 24^5 + 28^5 + 67^5. 160426514 = 3^6 + 19^6 + 22^6 = 10^6 + 15^6 + 23^6.
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, section 21.11.
Links
- R. Alter, Computations and generalizations on a remark of Ramanujan, pp. 182-196 of "Analytic Number Theory (Philadelphia, 1980)", ed. M. I. Knopp, Lect. Notes Math., Vol. 899, 1981. The value for a(6) given in Table 5 is wrong.
Extensions
a(4) and a(5) corrected by Donovan Johnson, Oct 28 2013
Edited by N. J. A. Sloane, Apr 03 2021
Comments