cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A230563 Smallest number that is the sum of three positive n-th powers in at least two ways.

Original entry on oeis.org

5, 27, 251, 2673, 1375298099, 160426514
Offset: 1

Views

Author

Jonathan Sondow, Oct 25 2013

Keywords

Comments

a(7) > 10^26 (if it exists). - Donovan Johnson, Nov 22 2013
a(7) > 33055^7 ~ 4.31*10^31 (if it exists). Duncan Moore, Oct 07 2017

Examples

			5 = 1^1 + 1^1 + 3^1 = 1^1 + 2^1 + 2^1.
27 = 1^2 + 1^2 + 5^2 = 3^2 + 3^2 + 3^2.
251 = 1^3 + 5^3 + 5^3 = 2^3 + 3^3 + 6^3.
2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4.
1375298099 = 3^5 + 54^5 + 62^5 = 24^5 + 28^5 + 67^5.
160426514 = 3^6 + 19^6 + 22^6 = 10^6 + 15^6 + 23^6.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, section 21.11.

Crossrefs

Extensions

a(4) and a(5) corrected by Donovan Johnson, Oct 28 2013
Edited by N. J. A. Sloane, Apr 03 2021

A004831 Numbers that are the sum of at most 2 nonzero 4th powers.

Original entry on oeis.org

0, 1, 2, 16, 17, 32, 81, 82, 97, 162, 256, 257, 272, 337, 512, 625, 626, 641, 706, 881, 1250, 1296, 1297, 1312, 1377, 1552, 1921, 2401, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4096, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6561, 6562, 6577, 6642
Offset: 1

Views

Author

Keywords

Comments

Apart from 0, 1, 2, there are no three consecutive terms up to 10^16. The first two consecutive terms not of the form n^4, n^4+1 are 3502321 = 25^4 + 42^4, 3502322 = 17^4 + 43^4. - Charles R Greathouse IV, Oct 17 2017

Crossrefs

Subsequences include A003336, A000583 and A002645.

Programs

  • Haskell
    a004831 n = a004831_list !! (n-1)
    a004831_list = [x ^ 4 + y ^ 4 | x <- [0..], y <- [0..x]]
    -- Reinhard Zumkeller, Jul 15 2013
    
  • Mathematica
    Reap[For[n = 0, n < 10000, n++, If[MatchQ[ PowersRepresentations[n, 2, 4], {{, },_}], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 30 2017 *)
  • PARI
    is(n)=#thue(thueinit(z^4+1),n) \\ Ralf Stephan, Oct 18 2013
    
  • PARI
    list(lim)=my(v=List(),t); for(m=0,sqrtnint(lim\=1,4), for(n=0, min(sqrtnint(lim-m^4,4),m), listput(v,n^4+m^4))); Set(v) \\ Charles R Greathouse IV, Sep 28 2015

Formula

Call f(x) the number of terms if this sequence up to x. Then x^(7/16) << f(x) << x^(1/2); in other words, n^2 << a(n) << n^(16/7). The upper bound becomes O(n^2) if A230562 is finite. - Charles R Greathouse IV, Jul 12 2024

A088687 Numbers that can be represented as j^4 + k^4, with 0 < j < k, in exactly one way.

Original entry on oeis.org

17, 82, 97, 257, 272, 337, 626, 641, 706, 881, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8962, 10001, 10016, 10081, 10256, 10625, 10657, 11296
Offset: 1

Views

Author

Cino Hilliard, Nov 22 2003

Keywords

Examples

			17 = 1^4 + 2^4.
635318657 = 133^4 + 134^4 is absent because it is also 59^4 + 158^4 (see A046881, A230562)
		

Crossrefs

Programs

  • Maple
    N:= 2*10^4: # for terms <= N
    V:= Vector(N):
    for j from 1 while 2*j^4 < N do
      for k from j+1 do
        r:= j^4 + k^4;
        if r > N then break fi;
        V[r]:= V[r]+1;
    od od:
    select(t -> V[t] = 1, [$1..N]); $ Robert Israel, Dec 15 2019
  • Mathematica
    lst={};Do[Do[x=a^4;Do[y=b^4;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/4)],a+1,-1}],{a,Floor[n^(1/4)],1,-1}],{n,4*7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)
  • PARI
    powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k",")) ); } powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }

Extensions

Edited by Don Reble, May 03 2006

A374696 a(n) is the smallest number which can be represented as the sum of 4 distinct nonzero fourth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

354, 6834, 16578, 300834, 2147874, 3847554, 16408434, 13155858, 489597858, 677125218, 780595299, 2374692243, 803898018, 5645172978
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 17 2024

Keywords

Examples

			a(2) = 6834 = 1^4 + 2^4 + 4^4 + 9^4 = 3^4 + 4^4 + 7^4 + 8^4.
a(3) = 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4.
		

Crossrefs

Extensions

a(9)-a(14) from Michael S. Branicky, Jul 21 2024

A374693 a(n) is the smallest number which can be represented as the sum of 3 distinct nonzero fourth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

98, 6578, 811538, 5978882, 1289202642, 292965218, 779888018, 5745705602, 105760443698, 49511121842, 1872511131218, 281539574498, 17673688436978
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 17 2024

Keywords

Comments

a(16) = 7865870969138. - Michael S. Branicky, Jul 23 2024

Examples

			a(2) = 6578 = 1^4 + 2^4 + 9^4 = 3^4 + 7^4 + 8^4.
a(3) = 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4.
		

Crossrefs

Extensions

a(9)-a(12) from Michael S. Branicky, Jul 22 2024
a(13) from Michael S. Branicky, Jul 23 2024
Showing 1-5 of 5 results.