cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003874 Degrees of irreducible representations of symmetric group S_10.

Original entry on oeis.org

1, 1, 9, 9, 35, 35, 36, 36, 42, 42, 75, 75, 84, 84, 90, 90, 126, 126, 160, 160, 210, 210, 225, 225, 252, 252, 288, 288, 300, 300, 315, 315, 350, 350, 448, 450, 450, 525, 525, 567, 567, 768
Offset: 1

Views

Author

Keywords

Comments

All 42 terms of this finite sequence are shown.

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].

Crossrefs

Row n=10 of A060240.

Programs

  • GAP
    A003874 := List(Irr(CharacterTable("S10")), chi->chi[1]);; Sort(A003874); # Eric M. Schmidt, Jul 18 2012
  • Magma
    // See A003875 for Magma code.
    
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    T[n_] := g[n, n, {}];
    Sort[T[10]] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)