cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185957 Second accumulation array of the array min{n,k}, by antidiagonals.

Original entry on oeis.org

1, 3, 3, 6, 10, 6, 10, 21, 21, 10, 15, 36, 46, 36, 15, 21, 55, 81, 81, 55, 21, 28, 78, 126, 146, 126, 78, 28, 36, 105, 181, 231, 231, 181, 105, 36, 45, 136, 246, 336, 371, 336, 246, 136, 45, 55, 171, 321, 461, 546, 546, 461, 321, 171, 55, 66, 210, 406, 606, 756, 812, 756
Offset: 1

Views

Author

Clark Kimberling, Feb 07 2011

Keywords

Comments

A member of the accumulation chain
... < A003982 < A003783 < A115262 < A185957 <...,
where A003783(n,k)=min{n,k}. See A144112 for the definition of accumulation array.
A185957 also gives the symmetric matrix based on the triangular numbers s=(1,3,6,10,15,....; viz, let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A185957 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202678 for characteristic polynomials of principal submatrices of M.

Examples

			Northwest corner:
1....3....6....10...15
3....10...21...36...55
6....21...46...81...126
10...36...81...146..231
		

Crossrefs

Programs

  • Mathematica
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[k (k + 1)/2, {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}] (* A000292 *)
    Table[m[1, j], {j, 1, 12}] (* A000217 *)
    Table[m[2, j], {j, 1, 12}] (* A014105 *)
    Table[m[j, j], {j, 1, 12}] (* A024166 *)
    Table[m[j, j + 1], {j, 1, 12}] (* A112851 *)
    Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}] (* A001769 *)

A286100 Square array A(n,k): If n = k, then A(n,k) = n, otherwise 0, read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, May 03 2017

Keywords

Examples

			The top left 9 X 9 corner of the array:
  1, 0, 0, 0, 0, 0, 0, 0, 0
  0, 2, 0, 0, 0, 0, 0, 0, 0
  0, 0, 3, 0, 0, 0, 0, 0, 0
  0, 0, 0, 4, 0, 0, 0, 0, 0
  0, 0, 0, 0, 5, 0, 0, 0, 0
  0, 0, 0, 0, 0, 6, 0, 0, 0
  0, 0, 0, 0, 0, 0, 7, 0, 0
  0, 0, 0, 0, 0, 0, 0, 8, 0
  0, 0, 0, 0, 0, 0, 0, 0, 9
		

Crossrefs

Cf. A000027 (the main diagonal).
Cf. also arrays A003982, A285732.

Programs

  • Mathematica
    Table[Function[s, If[OddQ@ Length@ s, ReplacePart[s, {# -> #}] &[Ceiling[n/2]], s]]@ ConstantArray[0, n], {n, 15}] // Flatten (* Michael De Vlieger, May 04 2017 *)
  • Python
    def A(n, k): return n if n==k else 0
    for n in range(1, 21): print( [A(k, n - k + 1) for k in range(1, n + 1)] ) # Indranil Ghosh, May 03 2017
  • Scheme
    (define (A286100 n) (A286100bi (A002260 n) (A004736 n)))
    (define (A286100bi row col) (if (= row col) row 0))
    

Formula

If n = k, then A(n,k) = n, otherwise 0.
Showing 1-2 of 2 results.