A004002 Benford numbers: a(n) = e^e^...^e (n times) rounded to nearest integer.
1, 3, 15, 3814279
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- C. W. Clenshaw, F. W. J. Olver and P. R. Turner, Level-index arithmetic: An introductory survey in: P. R. Turner (ed.), Numerical Analysis and Parallel Processing, Lecture Notes in Mathematics, Vol. 1397, Springer, Berlin, Heidelberg, 1989, pp. 95-168.
- Peter R. Turner, Will the "real" real arithmetic please stand up?, Notices Amer. Math. Soc., Vol. 38 (1991), pp. 298-304; entire issue.
- Index entries for sequences related to Benford's law (The present sequence seems unrelated to Benford's law!)
Crossrefs
Cf. A073236. - Melissa O'Neill, Jul 04 2015
Programs
-
Maple
p:= n-> `if`(n=0, 1, exp(1)^p(n-1)): a:= n-> round(p(n)): seq(a(n), n=0..3); # Alois P. Heinz, Jul 20 2024
-
Mathematica
Round[NestList[Power[E, #] &, 1, 3]] (* Melissa O'Neill, Jul 04 2015 *)
Formula
a(n) = round(e^e^...^e), where e occurs n times, a(0) = 1 (= e^0). - Melissa O'Neill, Jul 04 2015
Comments