A004003 Number of domino tilings (or dimer coverings) of a 2n X 2n square.
1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, 112202208776036178000000, 2444888770250892795802079170816, 548943583215388338077567813208427340288, 1269984011256235834242602753102293934298576249856
Offset: 0
Examples
The 36 solutions for the 4 X 4 board, from Neven Juric, May 14 2008: A01 = {(1,2), (3,4), (5,6), (7,8), (9,10), (11,12), (13,14), (15,16)} A02 = {(1,2), (3,4), (5,6), (7,11), (9,10), (8,12), (13,14), (15,16)} A03 = {(1,2), (3,4), (5,9), (6,7), (10,11), (8,12), (13,14), (15,16)} A04 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,12), (13,14), (15,16)} A05 = {(1,2), (3,4), (5,9), (6,10), (7,11), (8,12), (13,14), (15,16)} A06 = {(1,2), (3,4), (5,6), (7,8), (9,10), (13,14), (11,15), (12,16)} A07 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,15), (13,14), (12,16)} A08 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,12), (15,16)} A09 = {(1,2), (3,4), (5,6), (7,11), (8,12), (9,13), (10,14), (15,16)} A10 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,11), (14,15), (12,16)} A11 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,15), (12,16)} A12 = {(1,2), (5,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)} A13 = {(1,2), (3,7), (4,8), (5,9), (6,10), (11,12), (13,14), (15,16)} A14 = {(1,2), (5,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)} A15 = {(1,2), (3,7), (4,8), (6,10), (5,9), (11,15), (12,16), (13,14)} A16 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,14), (11,12), (15,16)} A17 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,11), (14,15), (12,16)} A18 = {(1,2), (5,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)} A19 = {(1,5), (2,6), (3,4), (7,8), (9,10), (11,12), (13,14), (15,16)} A20 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,10), (13,14), (15,16)} A21 = {(1,5), (3,4), (2,6), (9,10), (7,8), (11,15), (13,14), (12,16)} A22 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,12), (15,16)} A23 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,13), (10,14), (15,16)} A24 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,11), (14,15), (12,16)} A25 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,15), (12,16)} A26 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,12), (13,14), (15,16)} A27 = {(1,5), (2,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)} A28 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,15), (13,14), (12,16)} A29 = {(1,5), (2,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)} A30 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,12), (15,16)} A31 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,12), (15,16)} A32 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)} A33 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,11), (14,15), (12,16)} A34 = {(1,5), (2,3), (4,8), (6,10), (7,11), (9,13), (14,15), (12,16)} A35 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,15), (12,16)} A36 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,11), (14,15), (12,16)}
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 569.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Darko Veljan, Kombinatorika s teorijom grafova (Croatian) (Combinatorics with Graph Theory) mentions the value 12988816 = 2^4*901^2 for the 8 X 8 case on page 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..44 (first 26 terms from T. D. Noe)
- M. Aanjaneya and S. P. Pal, Faultfree tromino tilings of rectangles, arXiv:math/0610925 [math.CO], 2006.
- N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014.
- M. Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, Journal of Combinatorial Theory, Series A, Volume 77, Issue 1, January 1997, Pages 67-97.
- H. Cohn, 2-adic behavior of numbers of domino tilings, arXiv:math/0008222 [math.CO], 2000.
- Steven R. Finch, The Dimer Problem [From Steven Finch, Apr 20 2019]
- M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Physical Review, 124 (1961), 1664-1672.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 363
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22(1), 2015.
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, and Tianyuan Xu, Illustration for a(2) = 36 [Fig. 9 from "Sandpiles and Dominos"]
- W. Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
- Peter E. John and Horst Sachs, On a strange observation in the theory of the dimer problem, Discrete Math. 216 (2000), no. 1-3, 211-219.
- Adrien Kassel, Le modèle de dimères, Images des Mathématiques, CNRS, 2016. [In French]
- P. W. Kasteleyn, The Statistics of Dimers on a Lattice, Physica, 27 (1961), 1209-1225.
- P. W. Kasteleyn, Dimer statistics and phase transitions, J. Mathematical Phys. 4 1963 287-293. MR0153427 (27 #3394).
- Viet-Ha Nguyen, Kévin Perrot, and Mathieu Vallet, NP-completeness of the game Kingdomino(TM), Theoretical Computer Science (2020) Vol. 822, 23-35. See also arXiv:1909.02849, [cs.CC], 2019.
- Lior Pachter, Combinatorial approaches and conjectures ..., Elec. J. Comb. 4 (1997) #R29.
- James Propp, Some 2-Adic Conjectures Concerning Polyomino Tilings of Aztec Diamonds, Integers (2023) Vol. 23, Art. A30.
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), 609-640.
- N. J. A. Sloane, Illustration for a(2) = 36 [Slide from an old talk I gave]
- R. P. Stanley, A combinatorial miscellany
- Eric Weisstein's World of Mathematics, Domino Tiling
- Eric Weisstein, Illustration for a(2) = 36, from Domino Tilings web page (see previous link) [Included with permission]
- Index entries for sequences related to dominoes
Crossrefs
Programs
-
Maple
f := n->2^(2*n^2)*product(product(cos(i*Pi/(2*n+1))^2+cos(j*Pi/(2*n+1))^2,j=1..n),i=1..n); for k from 0 to 12 do round(evalf(f(k),300)) od;
-
Mathematica
a[n_] := Round[ N[ Product[ 2*Cos[(2i*Pi)/(2n+1)] + 2*Cos[(2j*Pi)/(2n+1)] + 4, {i, 1, n}, {j, 1, n}], 300] ]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 04 2012, after Maple *) Table[Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevU[2*n, I*x/2], x]], {n, 0, 12}] (* Vaclav Kotesovec, Dec 30 2020 *)
-
PARI
{a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(2*n, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
-
Python
from math import isqrt from sympy.abc import x from sympy import I, resultant, chebyshevu def A004003(n): return isqrt(resultant(chebyshevu(n<<1,x/2),chebyshevu(n<<1,I*x/2))) if n else 1 # Chai Wah Wu, Nov 07 2023
Formula
a(n) = A099390(2n,2n).
a(n) = Product_{j=1..n} Product_{k=1..n} (4*cos(j*Pi/(2*n+1))^2 + 4*cos(k*Pi/(2*n+1))^2). - N. J. A. Sloane, Mar 16 2015
a(n) = 2^n * A065072(n)^2. - Alois P. Heinz, Nov 22 2018
a(n)^2 = Resultant(U(2*n,x/2), U(2*n,i*x/2)), where U(n,x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 13 2020
a(n) ~ 2 * (sqrt(2)-1)^(2*n+1) * exp(G*(2*n+1)^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Dec 30 2020
Extensions
Corrected and extended by David Radcliffe
Comments