cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004003 Number of domino tilings (or dimer coverings) of a 2n X 2n square.

Original entry on oeis.org

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, 112202208776036178000000, 2444888770250892795802079170816, 548943583215388338077567813208427340288, 1269984011256235834242602753102293934298576249856
Offset: 0

Views

Author

Keywords

Comments

A099390 is the main entry for domino tilings (or dimer tilings) of a rectangle.
The numbers of domino tilings in A006253, A004003, A006125 give the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Christine Bessenrodt points out that Pachter (1997) shows that a(n) is divisible by 2^n (cf. A065072).
a(n) is the number of different ways to cover a 2n X 2n lattice with 2n^2 dominoes. John and Sachs show that a(n) = 2^n*B(n)^2, where B(n) == n+1 (mod 32) when n is even and B(n) == (-1)^((n-1)/2)*n (mod 32) when n is odd. - Yong Kong (ykong(AT)curagen.com), May 07 2000

Examples

			The 36 solutions for the 4 X 4 board, from Neven Juric, May 14 2008:
A01 = {(1,2), (3,4), (5,6), (7,8), (9,10), (11,12), (13,14), (15,16)}
A02 = {(1,2), (3,4), (5,6), (7,11), (9,10), (8,12), (13,14), (15,16)}
A03 = {(1,2), (3,4), (5,9), (6,7), (10,11), (8,12), (13,14), (15,16)}
A04 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,12), (13,14), (15,16)}
A05 = {(1,2), (3,4), (5,9), (6,10), (7,11), (8,12), (13,14), (15,16)}
A06 = {(1,2), (3,4), (5,6), (7,8), (9,10), (13,14), (11,15), (12,16)}
A07 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,15), (13,14), (12,16)}
A08 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,12), (15,16)}
A09 = {(1,2), (3,4), (5,6), (7,11), (8,12), (9,13), (10,14), (15,16)}
A10 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,11), (14,15), (12,16)}
A11 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,15), (12,16)}
A12 = {(1,2), (5,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A13 = {(1,2), (3,7), (4,8), (5,9), (6,10), (11,12), (13,14), (15,16)}
A14 = {(1,2), (5,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}
A15 = {(1,2), (3,7), (4,8), (6,10), (5,9), (11,15), (12,16), (13,14)}
A16 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,14), (11,12), (15,16)}
A17 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,11), (14,15), (12,16)}
A18 = {(1,2), (5,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A19 = {(1,5), (2,6), (3,4), (7,8), (9,10), (11,12), (13,14), (15,16)}
A20 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,10), (13,14), (15,16)}
A21 = {(1,5), (3,4), (2,6), (9,10), (7,8), (11,15), (13,14), (12,16)}
A22 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,12), (15,16)}
A23 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,13), (10,14), (15,16)}
A24 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,11), (14,15), (12,16)}
A25 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,15), (12,16)}
A26 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A27 = {(1,5), (2,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A28 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,15), (13,14), (12,16)}
A29 = {(1,5), (2,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}
A30 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,12), (15,16)}
A31 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,12), (15,16)}
A32 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A33 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,11), (14,15), (12,16)}
A34 = {(1,5), (2,3), (4,8), (6,10), (7,11), (9,13), (14,15), (12,16)}
A35 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A36 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,11), (14,15), (12,16)}
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 569.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Darko Veljan, Kombinatorika s teorijom grafova (Croatian) (Combinatorics with Graph Theory) mentions the value 12988816 = 2^4*901^2 for the 8 X 8 case on page 4.

Crossrefs

Main diagonal of array A099390 or A187596.

Programs

  • Maple
    f := n->2^(2*n^2)*product(product(cos(i*Pi/(2*n+1))^2+cos(j*Pi/(2*n+1))^2,j=1..n),i=1..n); for k from 0 to 12 do round(evalf(f(k),300)) od;
  • Mathematica
    a[n_] := Round[ N[ Product[ 2*Cos[(2i*Pi)/(2n+1)] + 2*Cos[(2j*Pi)/(2n+1)] + 4,  {i, 1, n}, {j, 1, n}], 300] ]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 04 2012, after Maple *)
    Table[Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevU[2*n, I*x/2], x]], {n, 0, 12}] (* Vaclav Kotesovec, Dec 30 2020 *)
  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(2*n, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
    
  • Python
    from math import isqrt
    from sympy.abc import x
    from sympy import I, resultant, chebyshevu
    def A004003(n): return isqrt(resultant(chebyshevu(n<<1,x/2),chebyshevu(n<<1,I*x/2))) if n else 1 # Chai Wah Wu, Nov 07 2023

Formula

a(n) = A099390(2n,2n).
a(n) = Product_{j=1..n} Product_{k=1..n} (4*cos(j*Pi/(2*n+1))^2 + 4*cos(k*Pi/(2*n+1))^2). - N. J. A. Sloane, Mar 16 2015
a(n) = 2^n * A065072(n)^2. - Alois P. Heinz, Nov 22 2018
a(n)^2 = Resultant(U(2*n,x/2), U(2*n,i*x/2)), where U(n,x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 13 2020
a(n) ~ 2 * (sqrt(2)-1)^(2*n+1) * exp(G*(2*n+1)^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Dec 30 2020

Extensions

Corrected and extended by David Radcliffe