A004007 Theta series of E_6 lattice.
1, 72, 270, 720, 936, 2160, 2214, 3600, 4590, 6552, 5184, 10800, 9360, 12240, 13500, 17712, 14760, 25920, 19710, 26064, 28080, 36000, 25920, 47520, 37638, 43272, 45900, 59040, 46800, 75600, 51840, 69264, 73710, 88560, 62208, 108000, 85176
Offset: 0
Keywords
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- G. Nebe and N. J. A. Sloane, Home page for this lattice
Crossrefs
Cf. A005129 (dual lattice).
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ q]^9 / QPochhammer[ q^3]^3 + 81 q QPochhammer[ q^3]^9 / QPochhammer[ q]^3, {q, 0, n}]; (* Michael Somos, Feb 19 2015 *) terms = 37; f[q_] = LatticeData["E6", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}] // Normal // Simplify[#, q > 0]&; (List @@ s)[[1 ;; terms]] /. q -> 1 (* Jean-François Alcover, Jul 04 2017 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^9 / eta(x^3 + A)^3 + 81 * x * eta(x^3 + A)^9 / eta(x + A)^3, n))}; /* Michael Somos, Oct 24 2006 */
Formula
Expansion of eta(q)^9 / eta(q^3)^3 + 81*q * eta(q^3)^9 / eta(q)^3 in powers of q.
Expansion of a(q)^3 + 2*c(q)^3 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Oct 24 2006
Comments