cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A109143 G.f.: cube root of theta series of E_6 lattice (cf. A004007).

Original entry on oeis.org

1, 24, -486, 18960, -866028, 43409520, -2305522278, 127386486480, -7243559214894, 420974335099176, -24888628571711040, 1491922400816664432, -90454843306100805420, 5536766153219810009520, -341663245004722577661324, 21230836457057377337055600, -1327296238831338778081286796
Offset: 0

Views

Author

N. J. A. Sloane and Nadia Heninger, Aug 18 2005

Keywords

Programs

  • Mathematica
    terms = 17; QP = QPochhammer; s = (QP[q]^9/QP[q^3]^3 + 81 q QP[q^3]^9 / QP[q]^3)^(1/3) + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 08 2017, after Michael Somos *)

Formula

a(n) ~ -(-1)^n * c * d^n / n^(4/3), where d = 68.1926041339304593440433078460708736926328270041397481947611089811133711468... and c = 0.241679782171000058724170446760823529819630243406508395073992160578... - Vaclav Kotesovec, Dec 11 2017

A005129 Theta series of {E_6}* lattice.

Original entry on oeis.org

1, 0, 54, 72, 0, 432, 270, 0, 918, 720, 0, 2160, 936, 0, 2700, 2160, 0, 5184, 2214, 0, 5616, 3600, 0, 9504, 4590, 0, 9180, 6552, 0, 15120, 5184, 0, 14742, 10800, 0, 21600, 9360, 0, 19548, 12240, 0, 30240, 13500, 0, 28080, 17712, 0, 39744, 14760, 0, 32454
Offset: 0

Views

Author

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 54*x^2 + 72*x^3 + 432*x^5 + 270*x^6 + 918*x^8 + 720*x^9 + 2160*x^11 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 127.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A004007 (E_6).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 3), 51); A[1]; /* Michael Somos, Dec 28 2015 */
  • Mathematica
    a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[(QPochhammer[x+A]^3 / QPochhammer[x^3+A])^3 + 9*x*(QPochhammer[x^3+A]^3 / QPochhammer[x+A])^3, {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from 1st PARI script *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 / QPochhammer[ q^3])^3 + 9 q (QPochhammer[ q^3]^3 /QPochhammer[ q])^3, {q, 0, n}]; Table[a[n], {n, 0, 80}] (* Michael Somos, Dec 28 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^3 + A))^3 + 9 * x * (eta(x^3 + A)^3 / eta(x + A))^3, n))}; /* Michael Somos, Feb 28 2012 */
    
  • PARI
    {a(n) = my(A, a1, p3); if( n<0, 0, A = x * O(x^n); a1 = sum( k=1, n, 6 * sumdiv(k, d, kronecker( d, 3)) * x^k, 1 + A); p3 = sum( k=1, n\3, -24 * sigma(k) * x^(3*k), 1 + A); polcoeff( (a1^3 + a1 * p3 - 4 * x * a1') / 2, n))}; /* Michael Somos, Feb 28 2012 */
    

Formula

Expansion of b(q)^3 + c(q)^3 / 3 in power of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q)^3 / eta(q^3))^3 + 9 * (eta(q^3)^3 / eta(q))^3 in powers of q.

A181976 Expansion of a(q) * b(q)^2 in powers of q where a(), b() are cubic AGM theta functions.

Original entry on oeis.org

1, 0, -27, 72, 0, -216, 270, 0, -459, 720, 0, -1080, 936, 0, -1350, 2160, 0, -2592, 2214, 0, -2808, 3600, 0, -4752, 4590, 0, -4590, 6552, 0, -7560, 5184, 0, -7371, 10800, 0, -10800, 9360, 0, -9774, 12240, 0, -15120, 13500, 0, -14040, 17712, 0, -19872, 14760
Offset: 0

Views

Author

Michael Somos, Apr 04 2012

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 27*q^2 + 72*q^3 - 216*q^5 + 270*q^6 - 459*q^8 + 720*q^9 + ...
		

Crossrefs

Cf. A004007.

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]^9 + 9*q*eta[q]^6*eta[q^9]^3)/eta[q^3]^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 11 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^9 + 9 * x * eta(x + A)^6 * eta(x^9 + A)^3) / eta(x^3 + A)^3, n))};

Formula

Expansion of b(q^3)^3 - 3 * b(q) * c(q^3)^2 in powers of q where b(), c() are cubic AGM theta functions.
Expansion of b(q^3)^2 * (b(q) + c(q^3)) in powers of q^3 where b(), c() are cubic AGM theta functions.
Expansion of (eta(q)^9 + 9 * q * eta(q)^6 * eta(q^9)^3) / eta(q^3)^3 in powers of q.
a(3*n + 1) = 0. a(3*n) = A004007(n).
Showing 1-3 of 3 results.