cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A109144 G.f.: cube root of theta series of E*_6 lattice (cf. A005129).

Original entry on oeis.org

1, 0, 18, 24, -324, -720, 9234, 33696, -307926, -1614000, 10860480, 78618672, -385935492, -3854459520, 13226566500, 189101997360, -408244450788, -9247223107008, 9292147273170, 449330421257568, 41307157825920, -21633699079357296, -25580513164295232, 1028997388914059808
Offset: 0

Views

Author

N. J. A. Sloane and Nadia Heninger, Aug 18 2005

Keywords

Programs

  • Mathematica
    terms = 24; QP = QPochhammer; s = ((QP[q]^3/QP[q^3])^3 + 9 q (QP[q^3]^3 / QP[q])^3)^(1/3) + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 08 2017, after Michael Somos *)

A004007 Theta series of E_6 lattice.

Original entry on oeis.org

1, 72, 270, 720, 936, 2160, 2214, 3600, 4590, 6552, 5184, 10800, 9360, 12240, 13500, 17712, 14760, 25920, 19710, 26064, 28080, 36000, 25920, 47520, 37638, 43272, 45900, 59040, 46800, 75600, 51840, 69264, 73710, 88560, 62208, 108000, 85176
Offset: 0

Views

Author

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005129 (dual lattice).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^9 / QPochhammer[ q^3]^3 + 81 q QPochhammer[ q^3]^9 / QPochhammer[ q]^3, {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
    terms = 37; f[q_] = LatticeData["E6", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}] // Normal // Simplify[#, q > 0]&; (List @@ s)[[1 ;; terms]] /. q -> 1 (* Jean-François Alcover, Jul 04 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^9 / eta(x^3 + A)^3 + 81 * x * eta(x^3 + A)^9 / eta(x + A)^3, n))}; /* Michael Somos, Oct 24 2006 */

Formula

Expansion of eta(q)^9 / eta(q^3)^3 + 81*q * eta(q^3)^9 / eta(q)^3 in powers of q.
Expansion of a(q)^3 + 2*c(q)^3 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Oct 24 2006
Showing 1-2 of 2 results.