A231948 Expansion of a(q)^2 * b(q) in powers of q where a(), b() are cubic AGM theta functions.
1, 9, 0, -90, 117, 0, -216, 450, 0, -738, 648, 0, -1170, 1530, 0, -1728, 1845, 0, -2160, 3258, 0, -4500, 3240, 0, -3672, 5409, 0, -6570, 5850, 0, -6480, 8658, 0, -8640, 7776, 0, -9594, 12330, 0, -15300, 11016, 0, -10800, 16650, 0, -17280, 14256, 0, -18450
Offset: 0
Keywords
Examples
G.f. = 1 + 9*q - 90*q^3 + 117*q^4 - 216*q^6 + 450*q^7 - 738*q^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
Programs
-
Mathematica
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]^3 + 9*eta[q^9]^3)^2*(eta[q]/eta[q^3])^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 08 2018 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3)^2 * (eta(x + A) / eta(x^3 + A))^3, n))}
Formula
Expansion of (eta(q)^3 + 9 * eta(q^9)^3)^2 * (eta(q) / eta(q^3))^3 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 3^(11/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A231947.
Comments