cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A231947 Expansion of q^(-1/3) * a(q)^2 * c(q) / 3 in powers of q where a(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, 13, 50, 72, 170, 205, 362, 360, 601, 650, 962, 864, 1370, 1224, 1850, 1584, 2451, 2210, 2880, 2520, 3722, 3277, 4490, 3600, 5330, 4706, 6242, 5040, 6912, 6120, 8500, 6624, 9410, 7813, 10610, 8424, 11882, 10250, 12672, 10440, 14521, 12506, 16130, 12240
Offset: 0

Views

Author

Michael Somos, Nov 15 2013

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 13*x + 50*x^2 + 72*x^3 + 170*x^4 + 205*x^5 + 362*x^6 + 360*x^7 + ...
G.f. = q + 13*q^4 + 50*q^7 + 72*q^10 + 170*q^13 + 205*q^16 + 362*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/3)*(eta[q]^3 + 9*eta[q^9]^3)^2*eta[q^3]/eta[q], {q, 0, 50}], q] (* G. C. Greubel, Aug 08 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3)^2 * eta(x^3 + A) / eta(x + A), n))}

Formula

Expansion of q^(-1/3) * (eta(q)^3 + 9 * eta(q^9)^3)^2 * eta(q^3) / eta(q) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 3^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A231948.
-9 * a(n) = A109041(3*n + 1).

A231961 Expansion of b(q)^3 - 3*c(q)^3 in powers of q where b(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, -90, -216, -738, -1170, -1728, -2160, -4500, -3672, -6570, -6480, -8640, -9594, -15300, -10800, -17280, -18450, -20736, -19656, -32580, -22464, -36900, -32400, -38016, -36720, -54090, -36720, -59058, -58500, -60480, -53136, -86580, -58968, -86400, -77760
Offset: 0

Views

Author

Michael Somos, Nov 15 2013

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 90*q - 216*q^2 - 738*q^3 - 1170*q^4 - 1728*q^5 - 2160*q^6 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]^3/ eta[q^3])^3 - 81*(eta[q^3]^3/eta[q])^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 08 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^3 + A))^3 - 81 * x * (eta(x^3 + A)^3 / eta(x + A))^3, n))};

Formula

Expansion of (eta(q)^3 / eta(q^3))^3 - 81 * (eta(q^3)^3 / eta(q))^3 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = - 3^(5/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A231962.
a(n) = A231948(3*n) = A231962(3*n).
Showing 1-2 of 2 results.