A231947 Expansion of q^(-1/3) * a(q)^2 * c(q) / 3 in powers of q where a(), c() are cubic AGM theta functions.
1, 13, 50, 72, 170, 205, 362, 360, 601, 650, 962, 864, 1370, 1224, 1850, 1584, 2451, 2210, 2880, 2520, 3722, 3277, 4490, 3600, 5330, 4706, 6242, 5040, 6912, 6120, 8500, 6624, 9410, 7813, 10610, 8424, 11882, 10250, 12672, 10440, 14521, 12506, 16130, 12240
Offset: 0
Keywords
Examples
G.f. = 1 + 13*x + 50*x^2 + 72*x^3 + 170*x^4 + 205*x^5 + 362*x^6 + 360*x^7 + ... G.f. = q + 13*q^4 + 50*q^7 + 72*q^10 + 170*q^13 + 205*q^16 + 362*q^19 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
Programs
-
Mathematica
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/3)*(eta[q]^3 + 9*eta[q^9]^3)^2*eta[q^3]/eta[q], {q, 0, 50}], q] (* G. C. Greubel, Aug 08 2018 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3)^2 * eta(x^3 + A) / eta(x + A), n))}
Comments