cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004009 Expansion of Eisenstein series E_4(q) (alternate convention E_2(q)); theta series of E_8 lattice.

Original entry on oeis.org

1, 240, 2160, 6720, 17520, 30240, 60480, 82560, 140400, 181680, 272160, 319680, 490560, 527520, 743040, 846720, 1123440, 1179360, 1635120, 1646400, 2207520, 2311680, 2877120, 2920320, 3931200, 3780240, 4747680, 4905600, 6026880
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
E_8 is also the Barnes-Wall lattice in 8 dimensions.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
The E_8 lattice is integral, unimodular, and even. The 240 shortest nonzero vectors in the lattice have norm squared 2. Of these vectors, 128 are all half-integer, and 112 are all integer. - Michael Somos, Jun 10 2019

Examples

			G.f. = 1 + 240*x + 2160*x^2 + 6720*x^3 + 17520*x^4 + 30240*x^5 + 60480*x^6 + ...
G.f. = 1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + 30240*q^10 + 60480*q^12 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123.
  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 53.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Collected Papers of Srinivasa Ramanujan, Chap. 16, Ed. G. H. Hardy et al., Chelsea, NY, 1962.
  • S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Ramanujan's Papers, p. 196, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
  • Jean-Pierre Serre, "A Course in Arithmetic", Springer, 1978
  • Joseph H. Silverman, "Advanced Topics in the Arithmetic of Elliptic Curves", Springer, 1994
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046948 (partial sums), A000143, A108091 (eighth root).
Cf. A006352 (E_2), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A007331 (theta_2(q)^8 / 256), A000143 (theta_3(q)^8), A035016 (theta_4(q)^8).

Programs

  • Magma
    Basis( ModularForms( Gamma1(1), 4), 29) [1]; /* Michael Somos, May 11 2015 */
    
  • Magma
    L := Lattice("E",8); A := ThetaSeries(L, 57); A; /* Michael Somos, Jun 10 2019 */
    
  • Maple
    with(numtheory); E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(4);
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 240 DivisorSigma[ 3, n]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^2 + 14 t2 t3 + t3^2], {q, 0, n}]; (* Michael Somos, Jun 04 2014 *)
    max = 30; s = 1 + 240*Sum[k^3*(q^k/(1 - q^k)), {k, 1, max}] + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, after Gene Ward Smith *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^2 - t2 t3 + t3^2], {q, 0, 2 n}]; (* Michael Somos, Jul 31 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, 240 * sigma(n, 3))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^24 + 256 * x * eta(x^2 + A)^24) / (eta(x + A) * eta(x^2 + A))^8, n))}; /* Michael Somos, Dec 30 2008 */
    
  • PARI
    q='q+O('q^50); Vec((eta(q)^24+256*q*eta(q^2)^24)/(eta(q)*eta(q^2))^8) \\ Altug Alkan, Sep 30 2018
    
  • Python
    from sympy import divisor_sigma
    def a(n): return 1 if n == 0 else 240 * divisor_sigma(n, 3)
    [a(n) for n in range(51)]  # Indranil Ghosh, Jul 15 2017
  • Sage
    ModularForms(Gamma1(1), 4, prec=30).0 ; # Michael Somos, Jun 04 2013
    

Formula

Can also be expressed as E4(q) = 1 + 240*Sum_{i >= 1} i^3 q^i/(1 - q^i) - Gene Ward Smith, Aug 22 2006
Theta series of E_8 lattice = 1 + 240 * Sum_{m >= 1} sigma_3(m) * q^(2*m), where sigma_3(m) is the sum of the cubes of the divisors of m (A001158).
Expansion of (phi(-q)^8 - (2 * phi(-q) * phi(q))^4 + 16 * phi(q)^8) in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q)^24 + 256 * eta(q^2)^24) / (eta(q) * eta(q^2))^8 in powers of q. - Michael Somos, Dec 30 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + 33*v^2 + 256*w^2 - 18*u*v + 16*u*w - 288*v*w . - Michael Somos, Jan 05 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 16*u2^2 + 81*u3^2 + 1296*u6^2 - 14*u1*u2 - 18*u1*u3 + 30*u1*u6 + 30*u2*u3 - 288*u2*u6 - 1134*u3*u6 . - Michael Somos, Apr 15 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = u^3*v + 9*w*u^3 - 84*u^2*v^2 + 246*u*v^3 - 253*v^4 - 675*w*u^2*v + 729*w^2*u^2 - 4590*w*u*v^2 + 19926*w*v^3 - 54675*w^2*u*v + 59049*w^3*u + 531441*w^3*v - 551124*w^2*v^2 . - Michael Somos, Apr 15 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = (t/i)^4 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
Convolution square is A008410. A008411 is convolution of this sequence with A008410.
Expansion of Ramanujan's function Q(q^2) = 12 (omega/Pi)^4 g2 (Weierstrass invariant) in powers of q^2.
Expansion of a(q) * (a(q)^3 + 8*c(q)^3) in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Jan 14 2015
G.f. is (theta_2(q)^8 + theta_3(q)^8 + theta_4(q)^8) / 2 where q = exp(Pi i t). So a(n) = A008430(n) + 128*A007331(n) (= A000143(2*n) + 128*A007331(n) = A035016(2*n) + 128*A007331(n)). - Seiichi Manyama, Sep 30 2018
a(n) = 240*A001158(n) if n>0. - Michael Somos, Oct 01 2018
Sum_{k=1..n} a(k) ~ 2 * Pi^4 * n^4 / 3. - Vaclav Kotesovec, Jan 14 2024