A004011 Theta series of D_4 lattice; Fourier coefficients of Eisenstein series E_{gamma,2}.
1, 24, 24, 96, 24, 144, 96, 192, 24, 312, 144, 288, 96, 336, 192, 576, 24, 432, 312, 480, 144, 768, 288, 576, 96, 744, 336, 960, 192, 720, 576, 768, 24, 1152, 432, 1152, 312, 912, 480, 1344, 144, 1008, 768, 1056, 288, 1872, 576, 1152, 96, 1368, 744, 1728, 336
Offset: 0
Examples
G.f. = 1 + 24*x + 24*x^2 + 96*x^3 + 24*x^4 + 144*x^5 + 96*x^6 + 192*x^7 + 24*x^8 + ... G.f. = 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + 144*q^10 + 96*q^12 + 192*q^14 + 24*q^16 + ...
References
- Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, 1998, see p. 148 Eq. (9.11).
- Harvey Cohn, Advanced Number Theory, Dover Publications, Inc., 1980, p. 89. Eq. (1).
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 119.
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 214.
- N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Megumi Asada, Bruce Fang, Eva Fourakis, Sarah Manski, Nathan McNew, Steven J. Miller, Gwyneth Moreland, Ajmain Yamin, and Sindy Xin Zhang, Avoiding 3-Term Geometric Progressions in Hurwitz Quaternions, Williams College (2023).
- Barry Brent, Quadratic Minima and Modular Forms, Experimental Mathematics, Vol. 7, No. 3 (1998), 257-274.
- Michael Gilleland, Some Self-Similar Integer Sequences.
- Fern Gossow, Lyndon-like cyclic sieving and Gauss congruence, arXiv:2410.05678 [math.CO], 2024. See p. 26.
- Nadia Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
- Gabriele Nebe and N. J. A. Sloane, Home page for D_4 lattice
- N. J. A. Sloane, The 24 minimal vectors form the 24-cell polytope.
- N. J. A. Sloane, Seven Staggering Sequences.
- Eric Weisstein's World of Mathematics, 24-Cell.
- Eric Weisstein's World of Mathematics, Barnes-Wall Lattice.
- Eric Weisstein's World of Mathematics, Eisenstein Series.
- Wikipedia, Hurwitz quaternion.
- Index entries for "core" sequences.
- Index entries for sequences related to Barnes-Wall lattices.
- Index entries for sequences related to D_4 lattice.
- Index entries for sequences related to Eisenstein series.
Crossrefs
Programs
-
Magma
Basis( ModularForms( Gamma0(2), 2), 54) [1]; /* Michael Somos, May 27 2014 */
-
Maple
readlib(ifactors): with(numtheory): for n from 1 to 100 do if n mod 2 = 0 then m := n/ifactors(n)[2][1][1]^ifactors(n)[2][1][2] else m := n fi: printf(`%d,`,24*sigma(m)) od: # James Sellers, Dec 07 2000
-
Mathematica
a[ n_] := If[ n < 0, 0, With[ {m = Floor @ Sqrt[4 n]}, SeriesCoefficient[ Sum[ q^( x^2 + y^2 + z^2 + t^2 + (x + y + z) t ), {x, -m, m}, {y, -m, m}, {z, -m, m}, {t, -m, m}] + O[q]^(n + 1), n]]]; (* Michael Somos, Jan 11 2011 *) a[n_] := 24*Total[ Select[ Divisors[n], OddQ]]; a[0]=1; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Sep 12 2012 *) a[ n_] := With[{m = InverseEllipticNomeQ @q}, SeriesCoefficient[ (1 + m) (EllipticK[ m] / (Pi/2))^2, {q, 0, n}]]; (* Michael Somos, Jun 04 2013 *) a[ n_] := With[{m = InverseEllipticNomeQ @q}, SeriesCoefficient[ (1 - m/2) (EllipticK[ m] / (Pi/2))^2, {q, 0, 2 n}]]; (* Michael Somos, Jun 04 2013 *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 2, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *) a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 4, 0, q]^4) / 2, {q, 0, 2 n}]; (* Michael Somos, Jun 04 2013 *)
-
PARI
{a(n) = if( n<1, n==0, 24 * sumdiv( n, d, d%2 * d))}; /* Michael Somos, Apr 17 2000 */
-
PARI
{a(n) = my(G); if( n<0, 0, G = [2, 1, 1, 1; 1, 2, 0, 0; 1, 0, 2, 0; 1, 0, 0, 2]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n, 1)), n))}; /* Michael Somos, Sep 11 2007 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^20 / (eta(x + A) * eta(x^4 + A))^8 + 16 * x * eta(x^4 + A)^8 / eta(x^2 + A)^4, n))}; /* Michael Somos, Oct 21 2017 */
-
Python
from sympy import divisors def a(n): return 1 if n==0 else 24*sum(d for d in divisors(n) if d%2) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
-
Python
from math import prod from sympy import factorint def A004011(n): return 24*prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) if n else 1 # Chai Wah Wu, Nov 13 2022
-
Sage
ModularForms( Gamma0(2), 2, prec=54).0; # Michael Somos, Jun 04 2013
Formula
a(0) = 1; if n>0 then a(n) = 24 (Sum_{d|n, d odd, d>0} d) = 24 * A000593(n).
G.f.: (1/2) * (theta_3(z)^4 + theta_4(z)^4) = theta_3(2z)^4 + theta_2(2z)^4 = Sum_{k>=0} a(k) * x^(2*k).
G.f.: Sum_{a, b, c, d in Z} x^(a^2 + b^2 + c^2 + d^2 + a*d + b*d + c*d). - Michael Somos, Jan 11 2011
Expansion of (1 + k^2) * K(k^2)^2 / (Pi/2)^2 in powers of nome q. - Michael Somos, Jun 10 2006
Expansion of (1 - k^2/2) * K(k^2)^2 / (Pi/2)^2 in powers of nome q^2. - Michael Somos, Mar 14 2012
Expansion of b(x) * b(x^2) + 3 * c(x) * c(x^2) in powers of x where b(), c() are cubic AGM theta functions. - Michael Somos, Jan 11 2011
Expansion of b(x) * b(x^2) + c(x) * c(x^2) / 3 in powers of x^3 where b(), c() are cubic AGM theta functions. - Michael Somos, Mar 14 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 2 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 11 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 2*u*v - 7*v^2 - 8*v*w + 16*w^2. - Michael Somos, May 29 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 4*u2^2 + 9*u3^2 + 36*u6^2 - 2*u1*u2 - 10*u1*u3 + 10*u1*u6 + 10*u2*u3 - 40*u2*u6 - 18*u3*u6. - Michael Somos, Sep 11 2007
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2 = 9.869604... (A002388). - Amiram Eldar, Dec 29 2023
Extensions
Additional comments from Barry Brent (barryb(AT)primenet.com)
Comments