cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004013 Theta series of body-centered cubic (b.c.c.) lattice.

Original entry on oeis.org

1, 0, 0, 8, 6, 0, 0, 0, 12, 0, 0, 24, 8, 0, 0, 0, 6, 0, 0, 24, 24, 0, 0, 0, 24, 0, 0, 32, 0, 0, 0, 0, 12, 0, 0, 48, 30, 0, 0, 0, 24, 0, 0, 24, 24, 0, 0, 0, 8, 0, 0, 48, 24, 0, 0, 0, 48, 0, 0, 72, 0, 0, 0, 0, 6, 0, 0, 24, 48, 0, 0, 0, 36, 0, 0, 56, 24, 0, 0, 0, 24, 0, 0, 72, 48, 0, 0, 0, 24, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x^3 + 6*x^4 + 12*x^8 + 24*x^11 + 8*x^12 + 6*x^16 + 24*x^19 + 24*x^20 + ...
G.f. = 1 + 8*q^(3/2) + 6*q^2 + 12*q^4 + 24*q^(11/2) + 8*q^6 + 6*q^8 + 24*q^(19/2) + 24*q^10 + 24*q^12 + 32*q^(27/2) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 116.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(8), 3/2), 90) [1]; /* Michael Somos, Sep 04 2014 */
  • Maple
    M:=100; M1:=M*(M+1)/2; ph:=series(add(q^(k^2),k=-M..M),q,M1): ps:=series(add(q^(k*(k+1)/2),k=0..M),q,M1): t1:=series(subs(q=q^2, ph)^3, q,M1): t2:=series((2*sqrt(q))^3*subs(q=q^4, ps)^3,q,M1): t3:=seriestolist(series(subs(q=q^2,t1+t2),q,M1)): for n from 0 to nops(t3)-1 do lprint(n,t3[n+1]); od:
  • Mathematica
    m = 13; m1 = m*((m + 1)/2); ph[q_] = Series[ Sum[ q^k^2, {k, -m, m}], {q, 0, m1}]; ps[q_] = Series[ Sum[ q^(k*((k + 1)/2)), {k, 0, m}], {q, 0, m1}]; t1[q_] = Normal[ Series[ ph[q^2]^3, {q, 0, m1}]]; t2[q_] = Normal[ Series[ (2*Sqrt[q])^3*ps[q^4]^3, {q, 0, m1}]]; CoefficientList[ Series[ t1[q^2] + t2[q^2], {q, 0, m1}], q] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
    (* From version 6 on *) terms=91; f[q_] = LatticeData["BodyCenteredCubic", "ThetaSeriesFunction"][-I Log[q]/Pi]; CoefficientList[Simplify[f[q] + O[q]^terms, q>0], q][[1 ;; terms]] (* Jean-François Alcover, May 15 2013, updated Jul 08 2017 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^4]^3 + EllipticTheta[ 2, 0, x^4]^3, {x, 0, n}]; (* Michael Somos, May 24 2013 *)
  • PARI
    {a(n) = if( n<0, 0, if( n%4==0, n/=4; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x * O(x^n))^3, n), n%8==3, n\=8; 8*polcoeff( sum(k=0, (sqrtint(8*n+1) - 1)\2, x^((k^2 + k)/2), x * O(x^n))^3, n)))}; /* Michael Somos, Oct 25 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A)^5 / eta(x^4 + A)^2 / eta(x^16 + A)^2)^3 + (2 * x * eta(x^16 + A)^2 / eta(x^8 + A))^3, n))}; /* Michael Somos, May 17 2008 */
    

Formula

subs(q=q^2, ph)^3+(2*sqrt(q))^3*subs(q=q^4, ps)^3, where ps = A010054 = Sum_{k=0..infinity} q^(k*(k+1)/2), ph = A000122 = Sum_{k=-infinity, infinity} q^(k^2).
Expansion of phi(q^4)^3 + 8 * q^3 * psi(q^8)^3 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Oct 25 2006
a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = 0. a(4*n) = A005875(n).
Expansion of theta_3(q)^3 + theta_2(q)^3 in powers of q^(1/4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A004015.
a(8*n) = A004015(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 4) = 2 * A045826(n). - Michael Somos, Jul 19 2015
a(12*n + 4) = 6 * A213056(n). a(16*n + 4) = 6 * A045834(n). a(16*n + 8) = 12 * A045828(n).