cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005875 Theta series of simple cubic lattice; also number of ways of writing a nonnegative integer n as a sum of 3 squares (zero being allowed).

Original entry on oeis.org

1, 6, 12, 8, 6, 24, 24, 0, 12, 30, 24, 24, 8, 24, 48, 0, 6, 48, 36, 24, 24, 48, 24, 0, 24, 30, 72, 32, 0, 72, 48, 0, 12, 48, 48, 48, 30, 24, 72, 0, 24, 96, 48, 24, 24, 72, 48, 0, 8, 54, 84, 48, 24, 72, 96, 0, 48, 48, 24, 72, 0, 72, 96, 0, 6, 96, 96, 24, 48, 96, 48, 0, 36, 48, 120
Offset: 0

Views

Author

Keywords

Comments

Number of ordered triples (i, j, k) of integers such that n = i^2 + j^2 + k^2.
The Madelung Coulomb energy for alternating unit charges in the simple cubic lattice is Sum_{n>=1} (-1)^n*a(n)/sqrt(n) = -A085469. - R. J. Mathar, Apr 29 2006
a(A004215(k))=0 for k=1,2,3,... but no other elements of {a(n)} are zero. - Graeme McRae, Jan 15 2007

Examples

			Order and signs are taken into account: a(1) = 6 from 1 = (+-1)^2 + 0^2 + 0^2, a(2) = 12 from 2 = (+-1)^2 + (+-1)^2 + 0^2; a(3) = 8 from 3 = (+-1)^2 + (+-1)^2 + (+-1)^2, etc.
G.f. =  1 + 6*q + 12*q^2 + 8*q^3 + 6*q^4 + 24*q^5 + 24*q^6 + 12*q^8 + 30*q^9 + 24*q^10 + ...
		

References

  • H. Cohen, Number Theory, Vol. 1: Tools and Diophantine Equations, Springer-Verlag, 2007, p. 317.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, Chapter V.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 109.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 54.
  • L. Kronecker, Crelle, Vol. LVII (1860), p. 248; Werke, Vol. IV, p. 188.
  • C. J. Moreno and S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman and Hall, 2006, p. 43.
  • T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.
  • W. Sierpiński, 1925. Teorja Liczb. pp. 1-410 (p.61).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 338, Eq. (B').

Crossrefs

Row d=3 of A122141 and of A319574, 3rd column of A286815.
Cf. A074590 (primitive solutions), A117609 (partial sums), A004215 (positions of zeros).
Analog for 4 squares: A000118.
x^2+y^2+k*z^2: A005875, A014455, A034933, A169783, A169784.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A005875List(len) = JacobiTheta3(len, 3)
    A005875List(75) |> println # Peter Luschny, Mar 12 2018
    
  • Magma
    Basis( ModularForms( Gamma1(4), 3/2), 75) [1]; /* Michael Somos, Jun 25 2014 */
    
  • Maple
    (sum(x^(m^2),m=-10..10))^3; seq(coeff(%,x,n), n=0..50);
    Alternative:
    A005875list := proc(len) series(JacobiTheta3(0, x)^3, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A005875list(75); # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[3,Range[0,80]] (* Harvey P. Dale, Jul 21 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3, {q, 0, n}]; (* Michael Somos, Jun 25 2014 *)
    a[ n_] := Length @ FindInstance[ n == x^2 + y^2 + z^2, {x, y, z}, Integers, 10^9]; (* Michael Somos, May 21 2015 *)
    QP = QPochhammer; CoefficientList[(QP[q^2]^5/(QP[q]*QP[q^4])^2)^3 + O[q]^80, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^3, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A) * eta(x^4 + A))^2)^3, n))}; /* Michael Somos, Jun 03 2012 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [ 1, 0, 0; 0, 1, 0; 0, 0, 1]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, May 21 2015 */
    
  • Python
    # uses Python code for A004018
    from math import isqrt
    def A005875(n): return A004018(n)+(sum(A004018(n-k**2) for k in range(1,isqrt(n)+1))<<1) # Chai Wah Wu, Jun 21 2024
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*3)
    Q.representation_number_list(75) # Peter Luschny, Jun 20 2014
    

Formula

A number n is representable as the sum of 3 squares iff n is not of the form 4^a (8k+7) (cf. A000378).
There is a classical formula (essentially due to Gauss):
For sums of 3 squares r_3(n): write (uniquely) -n=D(2^vf)^2, with D<0 fundamental discriminant, f odd, v>=-1. Then r_3(n) = 12L((D/.),0)(1-(D/2)) Sum_{d | f} mu(d)(D/d)sigma(f/d).
Here mu is the Moebius function, (D/2) and (D/d) are Kronecker-Legendre symbols, sigma is the sum of divisors function, L((D/.),0)=h(D)/(w(D)/2) is the value at 0 of the L function of the quadratic character (D/.), equal to the class number h(D) divided by 2 or 3 in the special cases D=-4 and -3. - Henri Cohen (Henri.Cohen(AT)math.u-bordeaux1.fr), May 12 2010
a(n) = 3*T(n) if n == 1,2,5,6 mod 8, = 2*T(n) if n == 3 mod 8, = 0 if n == 7 mod 8 and = a(n/4) if n == 0 mod 4, where T(n) = A117726(n). [Moreno-Wagstaff].
"If 12E(n) is the number of representations of n as a sum of three squares, then E(n) = 2F(n) - G(n) where G(n) = number of classes of determinant -n, F(n) = number of uneven classes." - Dickson, quoting Kronecker. [Cf. A117726.]
a(n) = Sum_{d^2|n} b(n/d^2), where b() = A074590() gives the number of primitive solutions.
Expansion of phi(q)^3 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Oct 25 2006.
Euler transform of period 4 sequence [ 6, -9, 6, -3, ...]. - Michael Somos, Oct 25 2006
G.f.: (Sum_{k in Z} x^(k^2))^3.
a(8*n + 7) = 0. a(4*n) = a(n).
a(n) = A004015(2*n) = A014455(2*n) = A004013(4*n) = A169783(4*n). a(4*n + 1) = 6 * A045834(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 5) = 24 * A045831(n). - Michael Somos, Jun 03 2012
a(4*n + 2) = 12 * A045828(n). - Michael Somos, Sep 03 2014
a(n) = (-1)^n * A213384(n). - Michael Somos, May 21 2015
a(n) = (6/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
a(n) = A004018(n) + 2*Sum_{k=1..floor(sqrt(n))} A004018(n - k^2). - Daniel Suteu, Aug 27 2021
Convolution cube of A000122. Convolution of A004018 and A000122. - R. J. Mathar, Aug 03 2025

Extensions

More terms from James Sellers, Aug 22 2000

A004015 Theta series of face-centered cubic (f.c.c.) lattice.

Original entry on oeis.org

1, 12, 6, 24, 12, 24, 8, 48, 6, 36, 24, 24, 24, 72, 0, 48, 12, 48, 30, 72, 24, 48, 24, 48, 8, 84, 24, 96, 48, 24, 0, 96, 6, 96, 48, 48, 36, 120, 24, 48, 24, 48, 48, 120, 24, 120, 0, 96, 24, 108, 30, 48, 72, 72, 32, 144, 0, 96, 72, 72, 48, 120, 0, 144, 12, 48, 48, 168, 48, 96
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 12*x + 6*x^2 + 24*x^3 + 12*x^4 + 24*x^5 + 8*x^6 + 48*x^7 + 6*x^8 + ...
G.f. = 1 + 12*q^2 + 6*q^4 + 24*q^6 + 12*q^8 + 24*q^10 + 8*q^12 + 48*q^14 + 6*q^16 + ...
From _Michael Somos_, Jan 05 2012: (Start)
a(2) = 6 since (1, -1, -1) is a solution to x^2 + y^2 + z^2 + x*y + x*z + y*z = 2 and the other 5 solutions are permutations and negations of this one.
a(2) = 6 since (1, 1, -1, -1) is a solution to x + y + z + w = 0 and x^2 + y^2 + z^2 + w^2 = 4 and the other 5 solutions are permutations of this one. (End)
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 113.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 263.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
  • L. V. Woodcock, Nature, Jan 09 1997, pp. 141-143.

Crossrefs

Cf. A004013, A005875, A005901, A045828. A055039 gives the positions of the 0's in this sequence.
Cf. A000007, A000122, A004016, A008444, A008445, A008446, A008447, A008448, A008449 (Theta series of lattices A_0, A_1, A_2, A_4, ...)

Programs

  • Magma
    L := Lattice("A",3); A := ThetaSeries(L, 140); A; /* Michael Somos, Nov 13 2014 */
    
  • Magma
    A := Basis( ModularForms( Gamma1(8), 3/2), 70); A[1] + 12*A[2] + 6*A[3] + 24*A[4]; /* Michael Somos, Sep 08 2018 */
    
  • Maple
    maxd := 201: temp0 := trunc(evalf(sqrt(maxd)))+2: a := 0: for i from -temp0 to temp0 do a := a+q^( (i+1/2)^2): od: th2 := series(a,q,maxd); a := 0: for i from -temp0 to temp0 do a := a+q^(i^2): od: th3 := series(a,q,maxd); th4 := series(subs(q=-q, th3),q,maxd); series((1/2)*(th3^3+th4^3),q,200);
  • Mathematica
    a[n_] := SquaresR[3, 2n]; Table[a[n], {n, 0, 69}] (* Jean-François Alcover, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^3 + EllipticTheta[ 4, 0, q]^3) / 2, {q, 0, 2 n}]; (* Michael Somos, May 24 2013 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2]^3 + 12 q QPochhammer[ q^4]^3 QPochhammer[ q^8]^2 / QPochhammer[ q^2]^2, {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
    SquaresR[3,2*Range[0,70]] (* Harvey P. Dale, Jun 01 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n*=2; polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^3, n))}; /* Michael Somos, Oct 25 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A)^5 / eta(x^2 + A)^2 / eta(x^8 + A)^2)^3 + 12 * x * eta(x^4 + A)^3 * eta(x^8 + A)^2 / eta(x^2 + A)^2, n))}; /* Michael Somos, May 17 2008 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep( [2, 1, 1; 1, 2, 1; 1, 1, 2], n, 1)[n])}; /* Michael Somos, Jan 02 2012 */
    
  • Python
    from math import prod, isqrt
    from sympy import factorint
    def A004018(n): return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items())<<2 if n else 1
    def A004015(n): return A004018(m:=n<<1)+(sum(A004018(m-k**2) for k in range(1,isqrt(m)+1))<<1) # Chai Wah Wu, Feb 24 2025

Formula

Expansion of phi(q^2)^3 + 12 * q * phi(q^2) * psi(q^4)^2 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Oct 25 2006
Expansion of (phi(q)^3 + phi(-q)^3) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Oct 25 2006
Expansion of b(q) * phi(q^18) + c(q^3) * phi(q^2) in powers of q^3 where b(), c() are cubic AGM theta functions and phi() is a Ramanujan theta function. - Michael Somos, Oct 25 2006
Expansion of (theta_3(q)^3 + theta_4(q)^3) / 2 in powers of q^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2^(7/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A004013.
a(n) = A005875(2*n).
G.f.: Sum_{i, j, k in Z} x^( i*i + j*j + k*k + i*j + i*k + j*k ). - Michael Somos, Jan 02 2012
From Michael Somos, Jan 05 2012: (Start)
Number of integer solutions to x^2 + y^2 + z^2 + x*y + x*z + y*z = n.
Number of integer solutions to x + y + z even and x^2 + y^2 + z^2 = 2 * n.
Number of integer solutions to x + y + z + w = 0 and x^2 + y^2 + z^2 + w^2 = 2 * n. (End)
a(2*n) = A005875(n). a(2*n+1) = 12 * A045828(n). - Michael Somos, Dec 28 2017

A004014 Norms of vectors in the b.c.c. lattice.

Original entry on oeis.org

0, 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32, 35, 36, 40, 43, 44, 48, 51, 52, 56, 59, 64, 67, 68, 72, 75, 76, 80, 83, 84, 88, 91, 96, 99, 100, 104, 107, 108, 115, 116, 120, 123, 128, 131, 132, 136, 139, 140, 144, 147, 148, 152, 155, 160, 163, 164, 168
Offset: 0

Views

Author

Keywords

Comments

Integers such that A004013(n) is nonzero. - Michael Somos, Jul 28 2014
A subsequence of A047458. The complement seems to be 4*A004215. - Andrey Zabolotskiy, Nov 11 2021
From Mohammed Yaseen, Nov 06 2022: (Start)
These are numbers of the form x^2+y^2+z^2 where x, y and z are either all even (including zero) or all odd.
The selection rule for the planes with Miller indices (hkl) to undergo X-ray diffraction in an f.c.c. lattice is h^2+k^2+l^2 = N where N is a term of this sequence. See A000378 for simple cubic lattice. (End)

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 116. (Chapter 4 section 6.7)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Union of A034045 and A017101. - Mohammed Yaseen, Nov 06 2022

Programs

  • Maple
    f:= JacobiTheta2(0,z^4)^3+JacobiTheta3(0,z^4)^3:
    S:= series(f,z,1001):
    select(t -> coeff(S,z,t) <> 0, [$0..1000]); # Robert Israel, Oct 18 2015
  • Mathematica
    f = EllipticTheta[2, 0, z^4]^3 + EllipticTheta[3, 0, z^4]^3; S = f + O[z]^200; Flatten[Position[CoefficientList[S, z], ?Positive] - 1] (* _Jean-François Alcover, Oct 23 2016, after Robert Israel *)

Extensions

More terms from Sean A. Irvine, Oct 17 2015

A261394 Expansion of phi(q)^4 / phi(q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 8, 24, 30, 8, 0, 36, 48, 24, 32, 48, 48, 30, 0, 48, 72, 8, 48, 96, 48, 0, 0, 96, 96, 36, 56, 48, 102, 48, 0, 120, 48, 24, 72, 48, 96, 32, 0, 96, 120, 48, 48, 144, 144, 48, 0, 96, 96, 30, 56, 120, 144, 0, 0, 108, 96, 48, 120, 144, 48, 72, 0, 144, 192, 8, 96
Offset: 0

Views

Author

Michael Somos, Aug 17 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x + 24*x^2 + 30*x^3 + 8*x^4 + 36*x^6 + 48*x^7 + 24*x^8 + ...
		

Crossrefs

Cf. A004013.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^4 / EllipticTheta[ 3, 0, q^3], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^20 * eta(x^3 + A)^2 * eta(x^12 + A)^2 / (eta(x + A)^8 * eta(x^4 + A)^8 * eta(x^6 + A)^5), n))};

Formula

Euler transform of period 12 sequence [ 8, -12, 6, -4, 8, -9, 8, -4, 6, -12, 8, -3, ...].
a(n) = A004013(12*n).

A290705 Theta series of triamond.

Original entry on oeis.org

1, 3, 0, 6, 0, 6, 8, 12, 6, 9, 0, 6, 0, 18, 0, 12, 12, 12, 0, 18, 0, 12, 24, 12, 8, 21, 0, 24, 0, 6, 0, 24, 6, 24, 0, 12, 0, 30, 24, 12, 24, 12, 0, 30, 0, 30, 0, 24, 24, 27, 0, 12, 0, 18, 32, 36, 0, 24, 0, 18, 0, 30, 0, 36, 12, 12, 0, 42, 0, 24, 48, 12, 30
Offset: 0

Views

Author

Andrey Zabolotskiy, Aug 09 2017

Keywords

Comments

Theta series with respect to a node of a lattice known as triamond, Laves graph [embedded in space], K_4 lattice, (10,3)-a, or srs net. This lattice possesses the "strong isotropic" property; the only other lattice that has this property in 3 dimensions is the diamond lattice. Unlike diamond, triamond is chiral.
A004013 and 3*A045828, interleaved.

Crossrefs

See A038620 for coordination sequence.

Programs

  • Mathematica
    (* count lattice sites straightforwardly *)
    cell = Join @@ ({#, # + {1, 1, 1}/2} & /@ {{0, 0, 0}, {1/4, 0, 1/4}, {-1/4, -1/4, 0}, {0, 1/4, -1/4}}); (* lattice sites in a conventional bcc unit cell *)
    n = 10;
    s = O[q]^(n^2 + 1) + Sum[q^(8 Norm[a + {i, j, k}]^2), {i, -n-1, n+1}, {j, -n-1,  n+1}, {k, -n-1, n+1}, {a, cell}];
    CoefficientList[Normal[s], q] &
    (* or use the generation function *)
    a[n_] := SeriesCoefficient[ EllipticTheta[3, 0, x^8]^3 + EllipticTheta[ 2, 0, x^8]^3 + 3/4 EllipticTheta[3, 0, x^2] EllipticTheta[2, 0, x^2]^2, {x, 0, n}];

A064511 Ramanujan's function F_5(q).

Original entry on oeis.org

1, 10, 0, 0, -30, 30, -20, 0, 0, 70, -20, 120, 0, 0, -60, 40, -110, 0, 0, 200, -90, 120, 0, 0, -100, 130, -120, 0, 0, 300, -60, 320, 0, 0, -160, 120, -210, 0, 0, 240, -100, 420, 0, 0, -360, 210, -220, 0, 0, 430, -120, 320, 0, 0, -200, 360, -300, 0, 0, 600, -120, 620
Offset: 0

Views

Author

N. J. A. Sloane, Oct 06 2001

Keywords

Examples

			G.f. = 1 + 10*q - 30*q^4 + 30*q^5 - 20*q^6 + 70*q^9 - 20*q^10 + 120*q^11 - 60*q^14 + ...
		

Crossrefs

See A000122 for F_2, A004016 for F_3, A004013 for F_4, A064511 (this sequence) for F_5, A064512 for F_7.

Programs

  • Mathematica
    f[q_] := Sum[(-1)^k*q^(k*(3*k - 1)/2), {k, - Infinity, Infinity}];
    CoefficientList[Series[f[-q]^5/f[-q^5] + 5*q*f[-q^5]^5/f[-q], {q, 0, 70}], q] (* G. C. Greubel, May 29 2019 *)

Formula

subs(q=-q, f)^5/subs(q=-q^5, f)+5*q*subs(q=-q^5, f)^5/subs(q=-q, f), where f = A010815 = Sum_{k=-infinity, infinity} (-1)^k*q^(k*(3*k-1)/2).

A023918 Theta series of A*_6 lattice.

Original entry on oeis.org

1, 0, 0, 14, 0, 42, 70, 42, 0, 0, 210, 0, 294, 294, 210, 0, 0, 504, 0, 630, 882, 350, 0, 0, 1190, 0, 1470, 1148, 882, 0, 0, 1680, 0, 1708, 2520, 1050, 0, 0, 3150, 0, 3570, 2940, 1750, 0, 0, 3066, 0, 3864, 4774, 2100, 0, 0, 6174, 0, 5740, 5124, 3570, 0, 0, 6090
Offset: 0

Views

Author

Keywords

Comments

Positions of nonzero entries seem to be A047328. - Andrey Zabolotskiy, Nov 10 2021

Examples

			1 + 14*x^3 + 42*x^5 + 70*x^6 + 42*x^7 + 210*x^10 + 294*x^12 + 294*x^13 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 114.

Crossrefs

Cf. A008446.
Cf. theta series of lattices A*_0, A*_1, A*_2, A*_3, A*_4...: A000007, A000122, A004016, A004013, A023916, A023917, this sequence, A023919-A023936.
Cf. A047328.

Programs

  • Mathematica
    a[n_] := Module[{A, A7}, A = x*O[x]^n; A7 = QPochhammer[x^7 + A]; A = QPochhammer[x + A]; SeriesCoefficient[A^7 / A7 + 7 * x * (A * A7)^3 + 7 * x^2 * A7^7 / A, {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from Michael Somos's PARI script *)
  • PARI
    {a(n) = local(A, A7); if( n<0, 0, A = x * O(x^n); A7 = eta(x^7 + A); A = eta(x + A); polcoeff( A^7 / A7 + 7 * x * (A * A7)^3 + 7 * x^2 * A7^7 / A, n))}; /* Michael Somos, Jan 29 2011 */

Formula

Expansion of f(-x)^7 / f(-x^7) + 7 * x * f(-x)^3 * f(-x^7)^3 + 7 * x^2 * f(-x^7)^7 / f(-x) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Jan 29 2011
a(7*n) = A008446(n). a(7*n + 1) = a(7*n + 2) = a(7*n + 4) = 0. - Michael Somos, Jan 29 2011
Showing 1-7 of 7 results.