cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A038620 Growth function (or coordination sequence) of the infinite cubic graph corresponding to the srs net (a(n) = number of nodes at distance n from a fixed node).

Original entry on oeis.org

1, 3, 6, 12, 24, 35, 48, 69, 86, 108, 138, 161, 192, 231, 260, 300, 348, 383, 432, 489, 530, 588, 654, 701, 768, 843, 896, 972, 1056, 1115, 1200, 1293, 1358, 1452, 1554, 1625, 1728, 1839, 1916, 2028, 2148, 2231, 2352, 2481, 2570, 2700, 2838, 2933, 3072, 3219
Offset: 0

Views

Author

Keywords

Comments

Other names for this structure are triamond, the Laves graph, K_4 lattice, (10,3)-a, or the srs net. A290705 is the theta series of the most symmetric embedding of this graph into space. - Andrey Zabolotskiy, Oct 05 2017
Sunada mentions several other contexts in chemistry and physics where this net occurs. - N. J. A. Sloane, Sep 25 2018
Also, coordination sequence of the hydrogen peroxide lattice. - Sean A. Irvine, May 09 2021

References

  • A. F. Wells, Three-dimensional Nets and Polyhedra, Wiley, 1977. See the net (10,3)-a.

Crossrefs

Cf. A038621 (partial sums), A290705 (theta series).

Programs

  • Mathematica
    CoefficientList[Series[-(x + 1) (2 x^8 - 4 x^7 + 3 x^6 - x^5 + 6 x^4 + 2 x^3 + 2 x^2 + x + 1)/((x - 1)^3 (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    LinearRecurrence[{1,0,2,-2,0,-1,1},{1,3,6,12,24,35,48,69,86,108},50] (* Harvey P. Dale, Sep 02 2017 *)

Formula

a(0)=1, a(1)=3, a(2)=6; for n>=3: if n == 0 (mod 3), a(n) = 4n^2/3; if n == 1 (mod 3), a(n) = (4n^2 + n + 4)/3; if n == 2 (mod 3), a(n) = (4n^2 - n + 10)/3.
G.f.: -(x+1)*(2*x^8-4*x^7+3*x^6-x^5+6*x^4+2*x^3+2*x^2+x+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, May 10 2013

Extensions

Links corrected by Jan Kristian Haugland, Mar 01 2009
More terms from Colin Barker, May 10 2013

A038621 Growth function of an infinite cubic graph (number of nodes at distance <=n from fixed node).

Original entry on oeis.org

1, 4, 10, 22, 46, 81, 129, 198, 284, 392, 530, 691, 883, 1114, 1374, 1674, 2022, 2405, 2837, 3326, 3856, 4444, 5098, 5799, 6567, 7410, 8306, 9278, 10334, 11449, 12649, 13942, 15300, 16752, 18306, 19931, 21659, 23498, 25414, 27442, 29590, 31821, 34173, 36654
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A038620.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x + 1) (2 x^8 - 4 x^7 + 3 x^6 - x^5 + 6 x^4 + 2 x^3 + 2 x^2 + x + 1)/((x - 1)^4 (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,4,10,22,46,81,129,198,284,392},50] (* Harvey P. Dale, Sep 03 2016 *)

Formula

a(0)=1, a(1)=4; for n>=2: if n == 0 (mod 3), a(n) = (4*n^3 + 6*n^2 + 15*n - 9)/9; if n == 1 (mod 3), a(n) = (4*n^3 + 6*n^2 + 18*n - 10)/9; if n == 2 (mod 3), a(n) = (4*n^3 + 6*n^2 + 15*n + 4)/9.
G.f.: (x+1)*(2*x^8-4*x^7+3*x^6-x^5+6*x^4+2*x^3+2*x^2+x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, May 10 2013

Extensions

More terms from Colin Barker, May 10 2013
Showing 1-2 of 2 results.