cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004033 Theta series of lattice A_2 tensor E_8 (dimension 16, det. 6561, min. norm 4). Also theta series of Eisenstein version of E_8 lattice.

Original entry on oeis.org

1, 0, 720, 13440, 97200, 455040, 1714320, 4821120, 12380400, 29043840, 58980960, 114076800, 219310320, 367338240, 621878400, 1037727360, 1583679600, 2401816320, 3747180240, 5232470400, 7551983520, 10938261120, 14715224640, 19930775040, 28073386800, 35727920640
Offset: 0

Views

Author

Keywords

Comments

Also theta series of 16-dimensional lattice (SL(2,9) Y SL(2,9)).(C2 x C2). - John Cannon, Jan 10 2007
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 720*x^2 + 13440*x^3 + 97200*x^4 + 455040*x^5 + 1714320*x^6 + 4821120*x^7 + ...
G.f. = 1 + 720*q^4 + 13440*q^6 + 97200*q^8 + 455040*q^10 + 1714320*q^12 + 4821120*q^14 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    // Definition for lattice (SL(2,9) Y SL(2,9)).(C2 x C2), from John Cannon
    LatticeWithBasis(16, \[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ], MatrixRing(IntegerRing(), 16) ! \[
    4, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 2, 1, 1, 1, 2,
    1, -1, 1, 1, 0, 1, 0, 1, 1, 2, 2, 4, 0, 1, 2, 2, 1, 1, 1, 2, 1, 0, 1,
    1, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 2, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 4,
    1, 1, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 2,
    0, 2, 1, 2, 1, 2, 2, 1, 1, 1, 4, 1, 0, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1,
    2, 1, 1, 1, 4, 1, 2, 2, 2, 1, 1, 1, 0, 1, -1, 1, 0, 1, 2, 0, 1, 4, 1,
    1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 2, 1, 4, 2, 2, 1, 0, 0, -1, 2,
    1, 2, 1, 0, 2, 2, 2, 1, 2, 4, 2, 0, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 2,
    2, 2, 2, 4, 1, 0, -1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 1, 4, 1, 1,
    1, 2, 0, 1, 1, 2, 2, 0, 1, 2, 0, 0, 0, 1, 4, 2, 1, 2, 1, 1, 1, 2, 1,
    1, 1, 1, 0, 1, -1, 1, 2, 4, 1, 1, 1, 2, 0, 2, 2, 1, 0, 1, -1, 1, 1, 1,
    1, 1, 4 ])
    
  • Magma
    // Definition for lattice A_2 tensor E_8, from John Cannon
    A := Lattice("A", 2);
    B := Lattice("E", 8);
    L := TensorProduct(A, B);
    T := ThetaSeries(L, 16);
    
  • Magma
    A := Basis( ModularForms( Gamma0(3), 8), 26); A[1] + 720*A[3]; /* Michael Somos, Feb 01 2017 */
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ With[ {a1 = (QPochhammer[ x]^3 + 9 x QPochhammer[ x^9]^3) / QPochhammer[ x^3]}, a1^2 (a1^6 - 48 x QPochhammer[ x]^6 QPochhammer[ x^3]^6)], {x, 0, n}]; (* Michael Somos, Feb 01 2017 *)
  • PARI
    {a(n) = if( n<0, 0, my(A, a1); A = x * O(x^n); a1 = (eta(x + A)^3 + 9*x * eta(x^9 + A)^3) / eta(x^3 + A); polcoeff( a1^2 * (a1^6 - 48*x * eta(x + A)^6 * eta(x^3 + A)^6), n))}; /* Michael Somos, Feb 01 2017 */

Formula

Theta series is x^8-48*x^2*y, x = phi_0(z) (see A004016), y = Delta_12(z) (see A007332) in the notation of SPLAG, Chap. 4. See A037150 for Maple code.
Expansion of a(x)^2 * (a(x)^6 - 48*x * f(-x)^6 * f(-x^3)^6) in powers of x where a() is a cubic AGM theta function and f() is a Ramanujan theta function. - Michael Somos, Feb 01 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 81 (t/i)^8 f(t) where q = exp(2 Pi i t). - Michael Somos, Feb 01 2017