cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004041 Scaled sums of odd reciprocals: a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).

Original entry on oeis.org

1, 4, 23, 176, 1689, 19524, 264207, 4098240, 71697105, 1396704420, 29985521895, 703416314160, 17901641997225, 491250187505700, 14459713484342175, 454441401368236800, 15188465029114325025, 537928935889764226500
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

n-th elementary symmetric function of the first n+1 odd positive integers.
Also the determinant of the n X n matrix given by m(i,j) = 2*i + 2 = if i = j and otherwise 1. For example, Det[{{4, 1, 1, 1, 1, 1}, {1, 6, 1, 1, 1, 1}, {1, 1, 8, 1, 1, 1}, {1, 1, 1, 10, 1, 1}, {1, 1, 1, 1, 12, 1}, {1, 1, 1, 1, 1, 14}}] = 264207 = a(6). - John M. Campbell, May 20 2011

Examples

			(arctanh(x))^2 = x^2 + 2/3*x^4 + 23/45*x^6 + 44/105*x^8 + ...
		

Crossrefs

Cf. A002428.
From Johannes W. Meijer, Jun 08 2009: (Start)
Equals second left hand column of A028338 triangle.
Equals second right hand column of A109692 triangle.
Equals second left hand column of A161198 triangle divided by 2.
(End)

Programs

  • Mathematica
    Table[(-1)^(n + 1)* Sum[(-2)^(n - k) k (-1)^(n - k) StirlingS1[n + 1, k + 1], {k, 0, n}], {n, 1, 18}] (* Zerinvary Lajos, Jul 08 2009 *)
    FunctionExpand@Table[(2 n + 1)!! (Log[4] + HarmonicNumber[n + 1/2])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 13 2016 *)

Formula

a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).
a(n) is coefficient of x^(2*n+2) in (arctanh x)^2, multiplied by (n + 1)*(2*n + 1)!!.
a(n) = Sum_{i=k+1..n} (-1)^(k+1-i)*2^(n-1)*binomial(i-1, k)*s1(n, i) with k = 1, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
a(n) ~ 2^(1/2)*log(n)*n*(2n/e)^n. - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
E.g.f.: 1/2*(1 - 2*x)^(-3/2)*(2 - log(1 - 2*x)). - Vladeta Jovovic, Feb 19 2003
Sum_{n>=1} a(n-1)/(n!*n*2^n) = (Pi/2)^2. - Philippe Deléham, Aug 12 2003
For n >= 1, a(n-1) = 2^(n-1)*n!*(Sum_{k=0..n-1} (-1)^k*binomial(1/2, k)/(n - k)). - Milan Janjic, Dec 14 2008
Recurrence: a(n) = 4*n*a(n-1) - (2*n - 1)^2*a(n-2). - Vladimir Reshetnikov, Oct 13 2016