cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004054 Expansion of (1-x)/((1+x)*(1-2*x)*(1-3*x)).

Original entry on oeis.org

1, 3, 11, 35, 111, 343, 1051, 3195, 9671, 29183, 87891, 264355, 794431, 2386023, 7163531, 21501515, 64526391, 193622863, 580955971, 1743042675, 5229477551, 15689131703, 47068793211, 141209175835, 423633119911, 1270910544543, 3812754003251, 11438306748995
Offset: 0

Views

Author

Keywords

Comments

Number of paths with n+2 steps on the cycle graph C_6 which start at the first node and end at the 3rd node and each step is -1, 0 or +1. - Herbert Kociemba, Sep 30 2020

Crossrefs

Programs

  • Magma
    [Ceiling(3^(n+2)/6+(-1)^(n+2)/6-0^n/6-2^(n+2)/6) : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
    
  • Mathematica
    Table[1/6 ((-1)^(2+n)-2^(n+2)+3^(n+2)),{n,0,30}] (* Herbert Kociemba, Sep 30 2020 *)
  • PARI
    Vec((1-x)/((1+x)*(1-2*x)*(1-3*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

From Paul Barry, Sep 13 2003: (Start)
The sequence 0, 0, 1, ... has a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*A001045(2*k).
a(n) = 3^n/6 + (-1)^n/6 - 0^n/6 - 2^n/6. (End)
The signed sequence 0, 1, -3, ... has g.f. x*(1+x)/((1-x)*(1+2*x)*(1+3*x)) and a(n) = 1/6 + (-2)^n/3 - (-3)^n/2. It is the third inverse binomial transform of A001045(2*n-1) - 0^n/2. - Paul Barry, Apr 21 2004
From Paul Barry, Jul 22 2004: (Start)
Convolution of A000244 and A078008.
a(n) = Sum_{k=0..n} A078008(k)*3^(n-k).
a(n) = (3*A000244(n) - A001045(n+2))/2. (End)
a(n) = (A001047(n+2) + (-1)^n)/6. - Vladimir Pletser, Dec 02 2023
a(n) = A094705(n+1)-A094705(n). - R. J. Mathar, Dec 02 2023