A093833
3^n-Jacobsthal(n).
Original entry on oeis.org
1, 2, 8, 24, 76, 232, 708, 2144, 6476, 19512, 58708, 176464, 530076, 1591592, 4777508, 14337984, 43024876, 129096472, 387333108, 1162086704, 3486434876, 10459654152, 31379661508, 94140382624, 282423944076, 847277424632
Offset: 0
A155118
Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
The array starts in row n=0 with columns k>=0 as:
0 1 3 9 27 81 243 729 2187 ... A140429;
1 2 6 18 54 162 486 1458 4374 ... A025192;
1 4 12 36 108 324 972 2916 8748 ... A003946;
3 8 24 72 216 648 1944 5832 17496 ... A080923;
5 16 48 144 432 1296 3888 11664 34992 ... A257970;
11 32 96 288 864 2592 7776 23328 69984 ...
21 64 192 576 1728 5184 15552 46656 139968 ...
Antidiagonal triangle begins as:
0;
1, 1;
1, 2, 3;
3, 4, 6, 9;
5, 8, 12, 18, 27;
11, 16, 24, 36, 54, 81;
21, 32, 48, 72, 108, 162, 243;
43, 64, 96, 144, 216, 324, 486, 729;
85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
-
t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
[t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
-
T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
-
t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
-
def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021
Showing 1-2 of 2 results.
Comments