cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004065 Define predecessors of n, P(n), to consist of numbers whose binary representation is obtained from that of n by replacing 10 with 01 or changing a final 1 to a 0; then a(0)=1, a(n) = Sum a(P(n)), n>0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 7, 5, 12, 12, 12, 1, 4, 9, 16, 14, 42, 54, 66, 14, 56, 110, 176, 110, 286, 286, 286, 1, 5, 14, 30, 28, 100, 154, 220, 42, 198, 462, 858, 572, 1716, 2002, 2288, 42, 240, 702, 1560, 1274, 4550, 6552, 8840, 1274, 5824, 12376
Offset: 0

Views

Author

David W. Wilson, Jan 29 2000

Keywords

Examples

			E.g. 201 = 11001001, so P(201) = {169, 197, 200}, a(201) = a(169) + a(197) + a(200).
		

Crossrefs

Cf. A003121.

Programs

  • Maple
    P:= proc(n) local h, i, m, s, t;
          t:= irem(n, 2, 'm');
          s:= `if`(t=1, {n-1}, {});
          for i from 0 while m>0 do h:= irem(m, 2, 'm');
            if h=1 and t=0 then s:= s union {n- 2^i} fi; t:=h
          od; s
        end:
    a:= proc(n) a(n):= `if`(n=0, 1, add(a(k), k=P(n))) end:
    seq (a(n), n=0..80);  # Alois P. Heinz, Jul 06 2012
  • Mathematica
    P[n_] := Module[{h, i, m, s, t}, {m, t} = QuotientRemainder[n, 2]; s = If[t == 1, {n-1}, {}]; For[i = 0, m>0, i++, {m, h} = QuotientRemainder[m, 2]; If[h == 1 && t == 0, s = s ~Union~ {n-2^i}]; t = h]; s]; a[n_] := a[n] = If[n == 0, 1, Sum[a[k], {k, P[n]}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 11 2015, after Alois P. Heinz *)

Formula

a(2^n-1) = A003121(n).

Extensions

Entry revised by N. J. A. Sloane, Jun 14 2012