A320488
Inverse Euler transform of A004104.
Original entry on oeis.org
1, 1, 0, 1, 4, 14, 65, 572, 7434, 163284, 5736792, 342169618, 33534958026, 5442700283638, 1484664947481018, 664513607618098252, 508538464299684269212, 635542752091150346032474, 1374528064543284187245552390, 4842758246111267151697826493193, 29772724415959420224886585241636839
Offset: 0
A053588
Number of self-complementary 4-multigraphs on n nodes.
Original entry on oeis.org
1, 1, 3, 16, 121, 1480, 50993, 3279685, 505641590, 152461906778, 103587671805408, 145528904385412088, 442626996609870050404, 2918362542591139744394993, 40446812392580562094804791143, 1260273961234324967695235253182680, 80686628450087709982052029871655471264
Offset: 1
- V. Jovovic, On the number of m-place relations (in Russian), Logiko-algebraicheskie konstruktsii, Tver, 1992, 59-66.
- J. Xu, Ch. R. Wang, J. F. Wang, The theory of self-complementary k-multigraphs (in Chinese), Pure Appl. Math. [Chuncui Shuxue yu Yingyong Shuxue] 10 (1994), Special Issue, 18-22.
-
permcount[v_] := Module[{m = 1, s = 0, t, i, k = 0}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[If[EvenQ[v[[i]]*v[[j]]], GCD[v[[i]], v[[j]]], 0], {i, 2, Length[v]}, {j, 1, i - 1}] + Sum[If[EvenQ[v[[i]]], 2 Quotient[v[[i]], 4], 0], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*5^edges[p], {p, IntegerPartitions[n]}]; s/n!];
a /@ Range[1, 20] (* Jean-François Alcover, Sep 22 2019, after Andrew Howroyd *)
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*5^edges(p)); s/n!} \\ Andrew Howroyd, Sep 17 2018
A004106
Number of line-self-dual nets (or edge-self-dual nets) with n nodes.
Original entry on oeis.org
1, 2, 3, 8, 29, 148, 1043, 11984, 229027, 6997682, 366204347, 30394774084, 4363985982959, 994090870519508, 393850452332173999, 249278602955869472540, 275042591834324901085904, 488860279973733024992540668, 1514493725905920009795681408275
Offset: 0
- F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 1..22 from R. W. Robinson)
- Frank Harary, Edgar M. Palmer, Robert W. Robinson, Allen J. Schwenk, Enumeration of graphs with signed points and lines, J. Graph Theory 1 (1977), no. 4, 295-308.
- R. W. Robinson, Notes - "A Present for Neil Sloane"
- R. W. Robinson, Notes - computer printout
-
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[If[Mod[v[[i]] v[[j]], 2] == 0, GCD[v[[i]], v[[j]]], 0], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[If[Mod[v[[i]], 2] == 0, 2 Quotient[v[[i]], 4], 0], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p]*2^Length[p], {p, IntegerPartitions[n]}]; s/n!];
Array[a, 19, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)*2^#p); s/n!} \\ Andrew Howroyd, Sep 25 2018
-
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A004106(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2) if not (r&1 and s&1))+sum(((q>>1)&-2)*r+(q*r*(r-1)>>1) for q, r in p.items() if q&1^1))<Chai Wah Wu, Jul 10 2024
A004107
Number of self-dual nets with 2n nodes.
Original entry on oeis.org
1, 1, 9, 165, 24651, 29522961, 286646256675, 21717897090413481, 12980536689318626076840, 62082697145168772833294318409, 2405195296608025717214293025492960466, 762399078635131851885116768114137369439908725
Offset: 0
- F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..40 (terms 1..13 from R. W. Robinson)
- Frank Harary, Edgar M. Palmer, Robert W. Robinson, and Allen J. Schwenk, Enumeration of graphs with signed points and lines, J. Graph Theory 1 (1977), no. 4, 295-308.
- R. W. Robinson, Notes - "A Present for Neil Sloane"
- R. W. Robinson, Notes - computer printout
-
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := 2 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[2 Quotient[v[[i]], 2], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Array[a, 12, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2*2)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 25 2018
-
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A004107(n): return int(sum(Fraction(3**((sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))<<1)+sum(((q&-2)+q*(r-1))*r for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024
A052111
Number of self-complementary 2-multigraphs with loops on n nodes.
Original entry on oeis.org
1, 2, 5, 24, 120, 956, 13214, 275848, 10613479, 601955190, 63788179593, 9985272721908, 2906903866536978, 1268802939666164781, 1023198355173637429689, 1258181815243248217067175, 2834890911778762731361375215, 9900896274205100008273760895560
Offset: 1
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i],v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2+1))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018
-
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A052111(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2) if not (r&1 and s&1))+sum(((q>>1)|1)*r+(q*r*(r-1)>>1) for q, r in p.items() if q&1^1)),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024
A320499
Number of connected self-dual signed graphs with n nodes.
Original entry on oeis.org
1, 1, 0, 1, 3, 14, 62, 572, 7409, 163284, 5736443, 342169618, 33534945769, 5442700283638, 1484664946343496, 664513607618098252, 508538464299389501337, 635542752091150346032474, 1374528064543283977151585962, 4842758246111267151697826493193
Offset: 0
a(0)=1 prepended and terms a(13) and beyond from
Andrew Howroyd, Jan 26 2020
Showing 1-6 of 6 results.
Comments