cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A320488 Inverse Euler transform of A004104.

Original entry on oeis.org

1, 1, 0, 1, 4, 14, 65, 572, 7434, 163284, 5736792, 342169618, 33534958026, 5442700283638, 1484664947481018, 664513607618098252, 508538464299684269212, 635542752091150346032474, 1374528064543284187245552390, 4842758246111267151697826493193, 29772724415959420224886585241636839
Offset: 0

Views

Author

N. J. A. Sloane, Oct 25 2018

Keywords

Comments

The inverse Euler transform of A004104 does not give the number of connected self-dual signed graphs. The combinatorial interpretation of this sequence is that of either a connected self-dual signed graph or a pair of distinct connected signed graphs which are dual to each other (but not self-dual). - Andrew Howroyd, Jan 26 2020

Crossrefs

Extensions

Definition edited by Andrew Howroyd, Jan 26 2020

A053588 Number of self-complementary 4-multigraphs on n nodes.

Original entry on oeis.org

1, 1, 3, 16, 121, 1480, 50993, 3279685, 505641590, 152461906778, 103587671805408, 145528904385412088, 442626996609870050404, 2918362542591139744394993, 40446812392580562094804791143, 1260273961234324967695235253182680, 80686628450087709982052029871655471264
Offset: 1

Views

Author

Vladeta Jovovic, Jan 19 2000

Keywords

References

  • V. Jovovic, On the number of m-place relations (in Russian), Logiko-algebraicheskie konstruktsii, Tver, 1992, 59-66.
  • J. Xu, Ch. R. Wang, J. F. Wang, The theory of self-complementary k-multigraphs (in Chinese), Pure Appl. Math. [Chuncui Shuxue yu Yingyong Shuxue] 10 (1994), Special Issue, 18-22.

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, t, i, k = 0}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[If[EvenQ[v[[i]]*v[[j]]], GCD[v[[i]], v[[j]]], 0], {i, 2, Length[v]}, {j, 1, i - 1}] + Sum[If[EvenQ[v[[i]]], 2 Quotient[v[[i]], 4], 0], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*5^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    a /@ Range[1, 20] (* Jean-François Alcover, Sep 22 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*5^edges(p)); s/n!} \\ Andrew Howroyd, Sep 17 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Sep 17 2018

A004106 Number of line-self-dual nets (or edge-self-dual nets) with n nodes.

Original entry on oeis.org

1, 2, 3, 8, 29, 148, 1043, 11984, 229027, 6997682, 366204347, 30394774084, 4363985982959, 994090870519508, 393850452332173999, 249278602955869472540, 275042591834324901085904, 488860279973733024992540668, 1514493725905920009795681408275
Offset: 0

Views

Author

Keywords

Comments

A net in this context is a graph with both signed vertices and signed edges. A net is line-self-dual if changing the signs on all edges leaves the graph unchanged up to isomorphism. - Andrew Howroyd, Sep 25 2018

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[If[Mod[v[[i]] v[[j]], 2] == 0, GCD[v[[i]], v[[j]]], 0], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[If[Mod[v[[i]], 2] == 0, 2 Quotient[v[[i]], 4], 0], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p]*2^Length[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 19, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)*2^#p); s/n!} \\ Andrew Howroyd, Sep 25 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004106(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2) if not (r&1 and s&1))+sum(((q>>1)&-2)*r+(q*r*(r-1)>>1) for q, r in p.items() if q&1^1))<Chai Wah Wu, Jul 10 2024

Extensions

a(0)=1 prepended and a(17)-a(18) added by Andrew Howroyd, Sep 25 2018

A004107 Number of self-dual nets with 2n nodes.

Original entry on oeis.org

1, 1, 9, 165, 24651, 29522961, 286646256675, 21717897090413481, 12980536689318626076840, 62082697145168772833294318409, 2405195296608025717214293025492960466, 762399078635131851885116768114137369439908725
Offset: 0

Views

Author

Keywords

Comments

A net in this context is a graph with both signed vertices and signed edges. A net is self-dual if changing the signs on all edges and vertices leaves the graph unchanged up to isomorphism. - Andrew Howroyd, Sep 25 2018

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := 2 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[2 Quotient[v[[i]], 2], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 12, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2*2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 25 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004107(n): return int(sum(Fraction(3**((sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))<<1)+sum(((q&-2)+q*(r-1))*r for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 25 2018

A052111 Number of self-complementary 2-multigraphs with loops on n nodes.

Original entry on oeis.org

1, 2, 5, 24, 120, 956, 13214, 275848, 10613479, 601955190, 63788179593, 9985272721908, 2906903866536978, 1268802939666164781, 1023198355173637429689, 1258181815243248217067175, 2834890911778762731361375215, 9900896274205100008273760895560
Offset: 1

Views

Author

Vladeta Jovovic, Jan 21 2000

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).

Crossrefs

Programs

  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i],v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2+1))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A052111(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2) if not (r&1 and s&1))+sum(((q>>1)|1)*r+(q*r*(r-1)>>1) for q, r in p.items() if q&1^1)),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Extensions

Terms a(17) and beyond from Andrew Howroyd, Sep 16 2018

A320499 Number of connected self-dual signed graphs with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 3, 14, 62, 572, 7409, 163284, 5736443, 342169618, 33534945769, 5442700283638, 1484664946343496, 664513607618098252, 508538464299389501337, 635542752091150346032474, 1374528064543283977151585962, 4842758246111267151697826493193
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2018

Keywords

Crossrefs

Cf. A004102 (signed graphs), A004104 (self-dual), A053465 (connected signed graphs).

Programs

Formula

a(2*n-1) = b(2*n-1), a(2*n) = b(2*n) - (A053465(n) - a(n))/2 where b is the Inverse Euler transform of A004104. - Andrew Howroyd, Jan 27 2020

Extensions

Dead sequence restored by Andrew Howroyd, Jan 26 2020
a(0)=1 prepended and terms a(13) and beyond from Andrew Howroyd, Jan 26 2020
Showing 1-6 of 6 results.