A004115 Number of unlabeled rooted nonseparable graphs with n nodes.
0, 1, 1, 4, 22, 178, 2278, 46380, 1578060, 92765486, 9676866173, 1821391854302, 625710416245358, 395761853562201960, 464128290507379386872, 1015085639712281997464676, 4160440039279630394986003604, 32088534920274236421098827156776
Offset: 1
References
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..40 (terms 1..26 from R. W. Robinson)
- R. W. Robinson, Rooted non-separable graphs - computer printout
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!} graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)} cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); x*sSolve( sLog( gcr/(x*sv(1)) ), gcr )} { my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) } \\ Andrew Howroyd, Dec 25 2020