cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A013922 Number of labeled connected graphs with n nodes and 0 cutpoints (blocks or nonseparable graphs).

Original entry on oeis.org

0, 1, 1, 10, 238, 11368, 1014888, 166537616, 50680432112, 29107809374336, 32093527159296128, 68846607723033232640, 290126947098532533378816, 2417684612523425600721132544, 40013522702538780900803893881856
Offset: 1

Views

Author

Stanley Selkow (sms(AT)owl.WPI.EDU)

Keywords

Comments

Or, number of labeled 2-connected graphs with n nodes.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p.402.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 9.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.20(b), g(n).

Crossrefs

Row sums of triangle A123534.

Programs

  • Mathematica
    seq[n_] := CoefficientList[Log[x/InverseSeries[x*D[Log[Sum[2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^n], x]]], x]*Range[0, n-2]!;
    seq[16] (* Jean-François Alcover, Aug 19 2019, after Andrew Howroyd *)
  • PARI
    seq(n)={Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))))), -n)} \\ Andrew Howroyd, Sep 26 2018

Formula

Harary and Palmer give e.g.f. in Eqn. (1.3.3) on page 10.

A002218 Number of unlabeled nonseparable (or 2-connected) graphs (or blocks) with n nodes.

Original entry on oeis.org

0, 1, 1, 3, 10, 56, 468, 7123, 194066, 9743542, 900969091, 153620333545, 48432939150704, 28361824488394169, 30995890806033380784, 63501635429109597504951, 244852079292073376010411280, 1783160594069429925952824734641, 24603887051350945867492816663958981
Offset: 1

Views

Author

Keywords

Comments

By definition, a(n) gives the number of graphs with zero cutpoints. - Travis Hoppe, Apr 28 2014
For n > 2, a(n) is also the number of simple biconnected graphs on n nodes. - Eric W. Weisstein, Dec 07 2021
This sequence follows R. W. Robinson's definition of a nonseparable graph which includes K_2 but not the singleton graph K_1. This definition is most suited to graphical enumeration. Other authors sometimes include K_1 as a block or exclude K_2 as not 2-connected. - Andrew Howroyd, Feb 26 2023

References

  • P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 188.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A325111 (for n>1).
Column sums of A339070.
Row sums of A339071.
The labeled version is A013922.
Cf. A000088 (graphs), A001349 (connected graphs), A006289, A006290, A004115 (rooted case), A010355 (by edges), A241767.

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(g=graphsSeries(n), gc=sLog(g), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
    { my(N=12); Vec(OgfSeries(cycleIndexSeries(N)), -N) } \\ Andrew Howroyd, Dec 28 2020

Extensions

More terms from Ronald C. Read. Robinson and Walsh list the first 26 terms.
a(1) changed from 0 to 1 by Eric W. Weisstein, Dec 07 2021
a(1) restored to 0 by Andrew Howroyd, Feb 26 2023

A007146 Number of unlabeled simple connected bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1

Views

Author

Keywords

Comments

Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - Gus Wiseman, Sep 02 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005470 (number of simple graphs).
Cf. A007145 (number of simple connected rooted bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
The labeled version is A095983.
Row sums of A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.

Programs

  • PARI
    \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) = A001349(n) - A052446(n). - Gus Wiseman, Sep 02 2019

Extensions

Reference gives first 22 terms.

A241767 Number of simple connected graphs with n nodes and exactly 1 articulation point (cutpoints).

Original entry on oeis.org

0, 0, 1, 2, 7, 33, 244, 2792, 52448, 1690206, 96288815, 9873721048, 1841360945834, 629414405238720, 397024508142598996, 464923623652122023478, 1016016289424631486429082, 4162473006943138723685574978, 32096861904411547975392065322659
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 28 2014

Keywords

Comments

Terms may be computed from A004115. See formula. There is an obvious bijection between a connected graph with 1 articulation point and a multiset of at least two rooted nonseparable graphs joined at the root node. - Andrew Howroyd, Nov 24 2020

Crossrefs

Column k=1 of A325111.
Cf. other simple connected graph sequences with k articulation points A002218, A241767, A241768, A241769, A241770, A241771.
Cf. A004115 (rooted and without articulation points).

Formula

G.f.: x/(Product_{k>=1} (1 - x^k)^A004115(k+1)) - x - Sum_{k>=1} A004115(k)*x^k. - Andrew Howroyd, Nov 24 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Nov 24 2020

A322396 Number of unlabeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 2, 5, 18, 98, 779, 10589, 255790, 11633297, 1004417286, 163944008107, 50324877640599, 29001521193534445, 31396727025729968365, 63969154112074956299242, 245871360738448777028919520, 1787330701747389106609369225312, 24636017249593067184544456944967278
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    bridgelessGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    cycleIndexSeries(n)={1+sSubstOp(bridgelessGraphs(n), symGroupSeries(n))}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Extensions

a(6)-a(10) from Andrew Howroyd, Dec 08 2018
Terms a(11) and beyond from Andrew Howroyd, Dec 31 2020

A007145 Number of rooted bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 4, 24, 193, 2420, 47912, 1600524, 93253226, 9694177479, 1822463625183, 625829508087155, 395785845695978077, 464137111800208818956, 1015091598240432264958267, 4160447480034069826186309689, 32088552194861245127627790541334
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); sSolve( gcr, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 27 2020

Extensions

Reference gives first 22 terms (terms a(21) and a(22) contain typos).
More terms from R. J. Mathar, Jun 06 2007

A340028 Number of unlabeled 2-connected graphs with n vertices rooted at a pair of noninterchangeable vertices.

Original entry on oeis.org

0, 1, 1, 7, 55, 655, 11147, 287791, 11787747, 804475261, 94875366649, 19825870580671, 7466490852631207, 5129453728126116131, 6487332587944013948099, 15213161506747424007012971, 66536415576917924594383104139, 545371527333985035460963541248785
Offset: 1

Views

Author

Andrew Howroyd, Jan 02 2021

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); x*sPoint(sSolve( sLog( gcr/(x*sv(1)) ), gcr ))}
    { my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) }

A340029 Number of unlabeled 2-connected graphs with n vertices rooted at a pair of indistinguishable vertices.

Original entry on oeis.org

0, 1, 1, 6, 37, 388, 6004, 148759, 5974184, 404509191, 47552739892, 9923861406343, 3735194287263442, 2565376853616300801, 3244070698095148283628, 7607050619214875184974489, 33269229977451262849539412860, 272689940536978851416633440863567
Offset: 1

Views

Author

Andrew Howroyd, Jan 02 2021

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    blockGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
    cycleIndexSeries(n)={sCartProd(blockGraphs(n), x^2 * symGroupCycleIndex(2) * symGroupSeries(n-2))}
    { my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) }
Showing 1-8 of 8 results.