A013922
Number of labeled connected graphs with n nodes and 0 cutpoints (blocks or nonseparable graphs).
Original entry on oeis.org
0, 1, 1, 10, 238, 11368, 1014888, 166537616, 50680432112, 29107809374336, 32093527159296128, 68846607723033232640, 290126947098532533378816, 2417684612523425600721132544, 40013522702538780900803893881856
Offset: 1
Stanley Selkow (sms(AT)owl.WPI.EDU)
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p.402.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 9.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.20(b), g(n).
- Andrew Howroyd, Table of n, a(n) for n = 1..50 (terms 1..25 from R. W. Robinson)
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002.
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002 [Local copy, with permission]
- Thomas Lange, Biconnected reliability, Hochschule Mittweida (FH), Fakultät Mathematik/Naturwissenschaften/Informatik, Master's Thesis, 2015.
- Andrés Santos, Density Expansion of the Equation of State, in A Concise Course on the Theory of Classical Liquids, Volume 923 of the series Lecture Notes in Physics, pp 33-96, 2016. DOI:10.1007/978-3-319-29668-5_3. See Reference 40.
- S. Selkow, The enumeration of labeled graphs by number of cutpoints, Discr. Math. 185 (1998), 183-191.
-
seq[n_] := CoefficientList[Log[x/InverseSeries[x*D[Log[Sum[2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^n], x]]], x]*Range[0, n-2]!;
seq[16] (* Jean-François Alcover, Aug 19 2019, after Andrew Howroyd *)
-
seq(n)={Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))))), -n)} \\ Andrew Howroyd, Sep 26 2018
A002218
Number of unlabeled nonseparable (or 2-connected) graphs (or blocks) with n nodes.
Original entry on oeis.org
0, 1, 1, 3, 10, 56, 468, 7123, 194066, 9743542, 900969091, 153620333545, 48432939150704, 28361824488394169, 30995890806033380784, 63501635429109597504951, 244852079292073376010411280, 1783160594069429925952824734641, 24603887051350945867492816663958981
Offset: 1
- P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 188.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..40 [terms 1..26 from R. W. Robinson]
- P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp. [Annotated scanned copy]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- R. W. Robinson, Computer print-out of first 26 terms [Annotated scanned copy]
- R. W. Robinson, Tables
- R. W. Robinson, Tables [Local copy, with permission]
- R. W. Robinson, Enumeration of non-separable graphs, J. Combin. Theory 9 (1970), 327-356.
- R. W. Robinson and T. R. S. Walsh, Inversion of cycle index sum relations for 2- and 3-connected graphs, J. Combin. Theory Ser. B. 57 (1993), 289-308.
- R. W. Robinson and T. R. S. Walsh, Inversion of cycle index sum relations for 2- and 3-connected graphs, J. Combin. Theory Ser. B. 57 (1993), 289-308.
- Andrés Santos, Density Expansion of the Equation of State, in A Concise Course on the Theory of Classical Liquids, Volume 923 of the series Lecture Notes in Physics, pp 33-96, 2016. DOI:10.1007/978-3-319-29668-5_3. See Reference 40.
- Andrew J. Schultz and David A. Kofke, Fifth to eleventh virial coefficients of hard spheres, Phys. Rev. E 90, 023301, 4 August 2014
- D. Stolee, Isomorph-free generation of 2-connected graphs with applications, arXiv preprint arXiv:1104.5261 [math.CO], 2011.
- Rodrigo Stange Tessinari, Marcia Helena Moreira Paiva, Maxwell E. Monteiro, Marcelo E. V. Segatto, Anilton Garcia, George T. Kanellos, Reza Nejabati, and Dimitra Simeonidou, On the Impact of the Physical Topology on the Optical Network Performance, IEEE British and Irish Conference on Optics and Photonics (BICOP 2018), London.
- Eric Weisstein's World of Mathematics, Biconnected Graph
- Eric Weisstein's World of Mathematics, k-Connected Graph
-
\\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(g=graphsSeries(n), gc=sLog(g), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
{ my(N=12); Vec(OgfSeries(cycleIndexSeries(N)), -N) } \\ Andrew Howroyd, Dec 28 2020
More terms from Ronald C. Read. Robinson and Walsh list the first 26 terms.
A007146
Number of unlabeled simple connected bridgeless graphs with n nodes.
Original entry on oeis.org
1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..40 (terms 1..22 from R. J. Mathar)
- P. Hanlon and R. W. Robinson, Counting bridgeless graphs, J. Combin. Theory, B 33 (1982), 276-305, Table III.
- Eric Weisstein's World of Mathematics, Bridgeless Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Simple Graph
- Gus Wiseman, The a(3) = 1 through a(5) = 11 connected bridgeless graphs.
Cf.
A005470 (number of simple graphs).
Cf.
A007145 (number of simple connected rooted bridgeless graphs).
Cf.
A052446 (number of simple connected bridged graphs).
Cf.
A263914 (number of simple bridgeless graphs).
Cf.
A263915 (number of simple bridged graphs).
Row sums of
A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are
A327109.
Graphs with non-spanning edge-connectivity >= 2 are
A327200.
2-vertex-connected graphs are
A013922.
Cf.
A000719,
A001349,
A002494,
A261919,
A327069,
A327071,
A327074,
A327075,
A327077,
A327109,
A327144,
A327146.
-
\\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020
Reference gives first 22 terms.
A241767
Number of simple connected graphs with n nodes and exactly 1 articulation point (cutpoints).
Original entry on oeis.org
0, 0, 1, 2, 7, 33, 244, 2792, 52448, 1690206, 96288815, 9873721048, 1841360945834, 629414405238720, 397024508142598996, 464923623652122023478, 1016016289424631486429082, 4162473006943138723685574978, 32096861904411547975392065322659
Offset: 1
Cf.
A004115 (rooted and without articulation points).
A322396
Number of unlabeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.
Original entry on oeis.org
1, 1, 1, 2, 5, 18, 98, 779, 10589, 255790, 11633297, 1004417286, 163944008107, 50324877640599, 29001521193534445, 31396727025729968365, 63969154112074956299242, 245871360738448777028919520, 1787330701747389106609369225312, 24636017249593067184544456944967278
Offset: 0
-
\\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
bridgelessGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
cycleIndexSeries(n)={1+sSubstOp(bridgelessGraphs(n), symGroupSeries(n))}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020
A007145
Number of rooted bridgeless graphs with n nodes.
Original entry on oeis.org
1, 0, 1, 4, 24, 193, 2420, 47912, 1600524, 93253226, 9694177479, 1822463625183, 625829508087155, 395785845695978077, 464137111800208818956, 1015091598240432264958267, 4160447480034069826186309689, 32088552194861245127627790541334
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
\\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); sSolve( gcr, x*sv(1)*sExp(gcr) )}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 27 2020
Reference gives first 22 terms (terms a(21) and a(22) contain typos).
A340028
Number of unlabeled 2-connected graphs with n vertices rooted at a pair of noninterchangeable vertices.
Original entry on oeis.org
0, 1, 1, 7, 55, 655, 11147, 287791, 11787747, 804475261, 94875366649, 19825870580671, 7466490852631207, 5129453728126116131, 6487332587944013948099, 15213161506747424007012971, 66536415576917924594383104139, 545371527333985035460963541248785
Offset: 1
-
\\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); x*sPoint(sSolve( sLog( gcr/(x*sv(1)) ), gcr ))}
{ my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) }
A340029
Number of unlabeled 2-connected graphs with n vertices rooted at a pair of indistinguishable vertices.
Original entry on oeis.org
0, 1, 1, 6, 37, 388, 6004, 148759, 5974184, 404509191, 47552739892, 9923861406343, 3735194287263442, 2565376853616300801, 3244070698095148283628, 7607050619214875184974489, 33269229977451262849539412860, 272689940536978851416633440863567
Offset: 1
-
\\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
blockGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
cycleIndexSeries(n)={sCartProd(blockGraphs(n), x^2 * symGroupCycleIndex(2) * symGroupSeries(n-2))}
{ my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) }
Showing 1-8 of 8 results.
Comments