cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007146 Number of unlabeled simple connected bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1

Views

Author

Keywords

Comments

Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - Gus Wiseman, Sep 02 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005470 (number of simple graphs).
Cf. A007145 (number of simple connected rooted bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
The labeled version is A095983.
Row sums of A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.

Programs

  • PARI
    \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) = A001349(n) - A052446(n). - Gus Wiseman, Sep 02 2019

Extensions

Reference gives first 22 terms.

A004115 Number of unlabeled rooted nonseparable graphs with n nodes.

Original entry on oeis.org

0, 1, 1, 4, 22, 178, 2278, 46380, 1578060, 92765486, 9676866173, 1821391854302, 625710416245358, 395761853562201960, 464128290507379386872, 1015085639712281997464676, 4160440039279630394986003604, 32088534920274236421098827156776
Offset: 1

Views

Author

Keywords

References

  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!}
    graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)}
    cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); x*sSolve( sLog( gcr/(x*sv(1)) ), gcr )}
    { my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) } \\ Andrew Howroyd, Dec 25 2020

A327074 Number of unlabeled connected graphs with n vertices and exactly one bridge.

Original entry on oeis.org

0, 0, 1, 0, 1, 4, 25, 197, 2454, 48201, 1604016, 93315450, 9696046452, 1822564897453, 625839625866540, 395787709599238772, 464137745175250610865, 1015091996575508453655611, 4160447945769725861550193834, 32088553211819016484736085677320, 467409605282347770524641700949750858
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Unlabeled graphs with no bridges are counted by A007146 (unlabeled graphs with spanning edge-connectivity >= 2).

Crossrefs

The labeled version is A327073.
Unlabeled graphs with at least one bridge are A052446.
The enumeration of unlabeled connected graphs by number of bridges is A327077.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.

Programs

Formula

G.f.: (f(x)^2 + f(x^2))/2 where f(x) is the g.f. of A007145. - Andrew Howroyd, Aug 25 2019

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 25 2019
Showing 1-3 of 3 results.