cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 58 results. Next

A002218 Number of unlabeled nonseparable (or 2-connected) graphs (or blocks) with n nodes.

Original entry on oeis.org

0, 1, 1, 3, 10, 56, 468, 7123, 194066, 9743542, 900969091, 153620333545, 48432939150704, 28361824488394169, 30995890806033380784, 63501635429109597504951, 244852079292073376010411280, 1783160594069429925952824734641, 24603887051350945867492816663958981
Offset: 1

Views

Author

Keywords

Comments

By definition, a(n) gives the number of graphs with zero cutpoints. - Travis Hoppe, Apr 28 2014
For n > 2, a(n) is also the number of simple biconnected graphs on n nodes. - Eric W. Weisstein, Dec 07 2021
This sequence follows R. W. Robinson's definition of a nonseparable graph which includes K_2 but not the singleton graph K_1. This definition is most suited to graphical enumeration. Other authors sometimes include K_1 as a block or exclude K_2 as not 2-connected. - Andrew Howroyd, Feb 26 2023

References

  • P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 188.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A325111 (for n>1).
Column sums of A339070.
Row sums of A339071.
The labeled version is A013922.
Cf. A000088 (graphs), A001349 (connected graphs), A006289, A006290, A004115 (rooted case), A010355 (by edges), A241767.

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(g=graphsSeries(n), gc=sLog(g), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
    { my(N=12); Vec(OgfSeries(cycleIndexSeries(N)), -N) } \\ Andrew Howroyd, Dec 28 2020

Extensions

More terms from Ronald C. Read. Robinson and Walsh list the first 26 terms.
a(1) changed from 0 to 1 by Eric W. Weisstein, Dec 07 2021
a(1) restored to 0 by Andrew Howroyd, Feb 26 2023

A095983 Number of 2-edge-connected labeled graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 1, 10, 253, 11968, 1047613, 169181040, 51017714393, 29180467201536, 32121680070545657, 68867078000231169536, 290155435185687263172693, 2417761175748567327193407488, 40013922635723692336670167608181, 1318910073755307133701940625759574016
Offset: 0

Views

Author

Yifei Chen (yifei(AT)mit.edu), Jul 17 2004

Keywords

Comments

From Falk Hüffner, Jun 28 2018: (Start)
Essentially the same sequence arises as the number of connected bridgeless labeled graphs (graphs that are k-edge connected for k >= 2, starting elements of this sequence are 1, 1, 0, 1, 10, 253, 11968, ...).
Labeled version of A007146. (End)
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. This sequence counts graphs with spanning edge-connectivity >= 2, which, for n > 1, are connected graphs with no bridges. - Gus Wiseman, Sep 20 2019

Crossrefs

The unlabeled version is A007146.
Row sums of A327069 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with spanning edge-connectivity 2 are A327146.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.
Graphs without endpoints are A059167.
Graphs with spanning edge-connectivity 1 are A327071.

Programs

  • Mathematica
    seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[ Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k-1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
    seq[16] (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]>=2&]],{n,0,5}] (* Gus Wiseman, Sep 20 2019 *)
  • PARI
    \\ here p is initially A053549, q is A198046 as e.g.f.s.
    seq(n)={my(v=vector(n));
    my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))));
    my(q=x*exp(p)); p-=q;
    for(k=3, n, my(c=polcoeff(p,k)); v[k]=c*(k-1)!; p-=c*q^k);
    concat([0],v)} \\ Andrew Howroyd, Jun 18 2018
    
  • PARI
    seq(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))/x-1), -(n+1))} \\ Andrew Howroyd, Dec 28 2020

Formula

a(n) = A001187(n) - A327071(n). - Gus Wiseman, Sep 20 2019

Extensions

Name corrected and more terms from Pavel Irzhavski, Nov 01 2014
Offset corrected by Falk Hüffner, Jun 17 2018
a(12)-a(16) from Andrew Howroyd, Jun 18 2018

A326786 Cut-connectivity of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 2, 2, 0, 0, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (together with any resulting empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A326853), this is the same as vertex-connectivity (A327051).

Examples

			Positions of first appearances of each integer, together with the corresponding set-systems, are:
     0: {}
     1: {{1}}
     4: {{1,2}}
    52: {{1,2},{1,3},{2,3}}
  2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
		

Crossrefs

Cf. A000120, A013922, A029931, A048793, A070939, A305078, A322388, A322389 (same for MM-numbers), A322390, A326031, A326701, A326749, A326753, A326787 (edge-connectivity), A327051 (vertex-connectivity).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@bpe/@y],Function[del,Length[csm[DeleteCases[DeleteCases[bpe/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[vertConn[bpe[n]],{n,0,100}]

A007146 Number of unlabeled simple connected bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1

Views

Author

Keywords

Comments

Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - Gus Wiseman, Sep 02 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005470 (number of simple graphs).
Cf. A007145 (number of simple connected rooted bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
The labeled version is A095983.
Row sums of A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.

Programs

  • PARI
    \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) = A001349(n) - A052446(n). - Gus Wiseman, Sep 02 2019

Extensions

Reference gives first 22 terms.

A322395 Number of labeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 4, 26, 548, 22504, 1708336, 241874928, 65285161232, 34305887955616, 35573982726480064, 73308270568902715136, 301210456065963448091072, 2471487759846321319412778624, 40526856087731237340916330352896, 1328570640536613080046570271722309632
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16;
    seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n + 1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k - 1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
    A095983 = seq[nmax];
    a[n_] := If[n<3, 1, n+Sum[Binomial[n, k]*A095983[[k+1]]*k^(n-k), {k, 1, n}]];
    a /@ Range[0, nmax] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)

Formula

a(n) = n + Sum_{k=1..n} binomial(n,k)*A095983(k)*k^(n-k) for n >= 3. - Andrew Howroyd, Dec 07 2018

Extensions

a(6)-a(16) from Andrew Howroyd, Dec 07 2018

A327334 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 490, 212, 25, 1, 0, 6064, 15336, 9600, 1692, 75, 1, 0, 230896, 851368, 789792, 210140, 14724, 231, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. Except for complete graphs, this is the same as cut-connectivity (A327125).

Examples

			Triangle begins:
    1
    1   0
    1   1   0
    4   3   1   0
   26  28   9   1   0
  296 490 212  25   1   0
		

Crossrefs

The unlabeled version is A259862.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = A054592(1) = 1.
Column k = 1 is A327336.
Row sums without the first column are A001187, if we assume A001187(0) = A001187(1) = 0.
Row sums without the first two columns are A013922, if we assume A013922(1) = 0.
Cut-connectivity is A327125.
Spanning edge-connectivity is A327069.
Non-spanning edge-connectivity is A327148.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==k&]],{n,0,5},{k,0,n}]

Extensions

a(21)-a(35) from Robert Price, May 14 2021

A322338 Edge-connectivity of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 3, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The edge-connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			2093 is the Heinz number of (9,6,4), corresponding to the multiset partition {{1,1},{1,2},{2,2}}, which can be made disconnected by removing only the part {1,2}, so a(2093) = 1.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[PrimeOmega[n]-Max@@PrimeOmega/@Select[Divisors[n],Length[csm[primeMS/@primeMS[#]]]!=1&],{n,100}]

A327111 BII-numbers of set-systems with spanning edge-connectivity 1.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 88, 89, 90, 91, 96, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty set-system.

Examples

			The sequence of all set-systems with spanning edge-connectivity 1 together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  28: {{1,2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  32: {{2,3}}
		

Crossrefs

Graphs with spanning edge-connectivity >= 2 are counted by A095983.
BII-numbers for vertex-connectivity 1 are A327098.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for spanning edge-connectivity 2 are A327108.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
Set-systems with spanning edge-connectivity 2 are counted by A327130.
Graphs with spanning edge-connectivity 1 are counted by A327145.
Graphs with spanning edge-connectivity 2 are counted by A327146.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Select[Range[0,100],spanEdgeConn[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]

A326787 Non-spanning edge-connectivity of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 2, 3, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 3, 1, 2, 0, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 3, 4, 2
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.

Examples

			Positions of first appearances of each integer together with the corresponding set-systems:
     0: {}
     1: {{1}}
     5: {{1},{1,2}}
    21: {{1},{1,2},{1,3}}
    85: {{1},{1,2},{1,3},{1,2,3}}
   341: {{1},{1,2},{1,3},{1,4},{1,2,3}}
  1365: {{1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4}}
  5461: {{1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}}
		

Crossrefs

Cf. A000120, A013922, A048793, A070939, A095983, A322336, A322338 (same for MM-numbers), A326031, A326749, A326753, A326786 (vertex-connectivity).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=Length[sys]-Max@@Length/@Select[Subsets[sys],Length[csm[#]]!=1&];
    Table[eConn[bpe/@bpe[n]],{n,0,100}]

A322389 Vertex-connectivity of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The integer partition (6,4,3) with Heinz number 455 does not become disconnected or empty if 2 is divided out giving (3,3), or if 3 is divided out giving (4,2), but it does become disconnected or empty if both 2 and 3 are divided out giving (); so a(455) = 2.
195 is the Heinz number of (6,3,2), corresponding to the multiset partition {{1},{2},{1,2}}. Removing the vertex 1 gives {{2},{2}}, while removing 2 gives {{1},{1}}. These are both connected, so both vertices must be removed to obtain a disconnected or empty multiset partition; hence a(195) = 2.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Array[vertConn@*primeMS,100]
Showing 1-10 of 58 results. Next