A004207 a(0) = 1, a(n) = sum of digits of all previous terms.
1, 1, 2, 4, 8, 16, 23, 28, 38, 49, 62, 70, 77, 91, 101, 103, 107, 115, 122, 127, 137, 148, 161, 169, 185, 199, 218, 229, 242, 250, 257, 271, 281, 292, 305, 313, 320, 325, 335, 346, 359, 376, 392, 406, 416, 427, 440, 448, 464, 478, 497, 517, 530, 538
Offset: 0
References
- N. Agronomof, Problem 4421, L'Intermédiaire des mathématiciens, v. 21 (1914), p. 147.
- D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
- D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 65.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. E. Stevens and L. G. Hunsberger, A Result and a Conjecture on Digit Sum Sequences, J. Recreational Math. 27, no. 4 (1995), pp. 285-288.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 37.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- A. Ya. Belov (ed.), Collection of monster problems in mathematics (in Russian), 2003. Problem 39.
- D. R. Kaprekar, The Mathematics of the New Self Numbers [annotated and scanned]
- J. Laroche & N. J. A. Sloane, Correspondence, 1977
- Project Euler, Problem 551: Sum of digits sequence.
- Kenneth B. Stolarsky, The sum of a digitaddition series, Proc. Amer. Math. Soc. 59 (1976), no. 1, 1--5. MR0409340 (53 #13099)
- Index entries for Colombian or self numbers and related sequences
Crossrefs
Programs
-
Haskell
a004207 n = a004207_list !! n a004207_list = 1 : iterate a062028 1 -- Reinhard Zumkeller, Oct 14 2013, Sep 12 2011
-
Maple
read("transforms") : A004207 := proc(n) option remember; if n = 0 then 1; else add( digsum(procname(i)),i=0..n-1) ; end if; end proc: # R. J. Mathar, Apr 02 2014 # second Maple program: a:= proc(n) option remember; `if`(n<2, 1, (t-> t+add(i, i=convert(t, base, 10)))(a(n-1))) end: seq(a(n), n=0..60); # Alois P. Heinz, Jul 31 2022
-
Mathematica
f[s_] := Append[s, Plus @@ Flatten[IntegerDigits /@ s]]; Nest[f, {1}, 55] (* Robert G. Wilson v, May 26 2006 *) f[n_] := n + Plus @@ IntegerDigits@n; Join[{1}, NestList[f, 1, 80]] (* Alonso del Arte, May 27 2006 *)
-
PARI
a(n) = { my(f(d, i) = d+vecsum(digits(d)), S=vector(n)); S[1]=1; for(k=1, n-1, S[k+1] = fold(f, S[1..k])); S } \\ Satish Bysany, Mar 03 2017
-
PARI
a = 1; print1(a, ", "); for(i = 1, 50, print1(a, ", "); a = a + sumdigits(a)); \\ Nile Nepenthe Wynar, Feb 10 2018
-
Python
from itertools import islice def agen(): yield 1; an = 1 while True: yield an; an += sum(map(int, str(an))) print(list(islice(agen(), 54))) # Michael S. Branicky, Jul 31 2022
Formula
For n>1, a(n) = a(n-1) + sum of digits of a(n-1).
For n > 1: a(n) = A062028(a(n-1)). - Reinhard Zumkeller, Oct 14 2013
Extensions
Errors from 25th term on corrected by Leonid Broukhis, Mar 15 1996
Typo in definition fixed by Reinhard Zumkeller, Sep 14 2011
Comments