A004306 Rook polynomials.
1, 1, 2, 6, 24, 44, 80, 144, 264, 484, 888, 1632, 3000, 5516, 10144, 18656, 34312, 63108, 116072, 213488, 392664, 722220, 1328368, 2443248, 4493832, 8265444, 15202520, 27961792, 51429752, 94594060, 173985600, 320009408, 588589064, 1082584068, 1991182536
Offset: 0
References
- D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..400
- N. Metropolis, M. L. Stein, and P. R. Stein, Permanents of cyclic (0,1) matrices, Journal of Combinatorial Theory, Volume 7, Issue 4, December 1969, Pages 291-321.
- Earl Glen Whitehead, Jr., Four-discordant permutations, J. Austral. Math. Soc. Ser. A 28 (1979), no. 3, 369-377.
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+ 2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4) )); // G. C. Greubel, Apr 22 2019 -
Mathematica
Join[{1,1,2,6},LinearRecurrence[{2,0,0,-1},{24,44,80,144},40]] (* or *) CoefficientList[ Series[ (1-x+2x^3+13x^4- 3x^5- 6x^6- 10x^7)/ (1-2x+ x^4),{x,0,40}],x] (* Harvey P. Dale, Dec 13 2011 *)
-
PARI
my(x='x+O('x^40)); Vec((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1 -2*x+x^4)) \\ G. C. Greubel, Apr 22 2019
-
Sage
((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019
Formula
G.f.: (1 - x + 2*x^3 + 13*x^4 - 3*x^5 - 6*x^6 - 10*x^7)/(1 - 2*x + x^4).
a(n) = 2*a(n-1) - a(n-4); a(0)=1, a(1)=1, a(2)=2, a(3)=6, a(4)=24, a(5)=44, a(6)=80, a(7)=144. - Harvey P. Dale, Dec 13 2011
Comments