cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A023829 Sum of exponents in prime-power factorization of C(4n,n-3).

Original entry on oeis.org

0, 4, 3, 5, 6, 8, 9, 9, 6, 10, 10, 13, 11, 15, 14, 15, 13, 17, 14, 17, 15, 19, 20, 18, 18, 21, 19, 21, 17, 24, 23, 26, 22, 26, 25, 25, 24, 28, 27, 26, 25, 28, 27, 29, 26, 31, 31, 33, 29, 34, 28, 31, 30, 33, 33, 32, 30, 34, 35, 37, 34, 42, 41, 41, 37, 40, 38, 42, 37, 44, 42, 41, 42, 45, 45, 46, 43, 45
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[Binomial[4 n, n - 3]], {n, 3, 78}] (* Ivan Neretin, Nov 02 2017 *)
  • PARI
    a(n) = bigomega(binomial(4*n,n-3)); \\ Amiram Eldar, Jun 13 2025

Formula

From Amiram Eldar, Jun 13 2025 (Start)
a(n) = A001222(A004333(n)).
a(n) = A023828(n) - A001222(3*n+3) + A001222(n-2). (End)

Extensions

Offset corrected to 3 by Ivan Neretin, Nov 02 2017

A026020 a(n) = binomial(4n, n) - binomial(4n, n - 3).

Original entry on oeis.org

1, 4, 28, 219, 1804, 15314, 132572, 1163565, 10316924, 92195488, 829016968, 7492106505, 67991427828, 619193535380, 5655829748520, 51794730347745, 475390078267356, 4371917301657488, 40276635724273936, 371630891401943020, 3433826368544377520, 31768260456301092090
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = T(4n, n), where T is the array defined in A026009.
Bisections are A026012 and A026016.

Programs

  • Magma
    [Binomial(4*n, n) - Binomial(4*n, n-3): n in [0..20]]; // G. C. Greubel, Mar 22 2021
    
  • Maple
    A026020:= n-> binomial(4*n,n) - binomial(4*n,n-3); seq(A026020(n), n=0..20); # G. C. Greubel, Mar 22 2021
  • Mathematica
    Table[Binomial[4n, n] - Binomial[4n, n - 3], {n, 0, 19}] (* Alonso del Arte, Jun 06 2019 *)
  • PARI
    a(n) = binomial(4*n, n) - binomial(4*n, n-3) \\ Felix Fröhlich, Jun 06 2019
    
  • Sage
    [binomial(4*n, n) - binomial(4*n, n-3) for n in (0..20)] # G. C. Greubel, Mar 22 2021

Formula

G.f.: (g - 2)*(1 - g + g^2)*g/(3*g - 4) where g = 1 + x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
a(n) = A005810(n) - A004333(n) for n > 2 - Felix Fröhlich, Jun 06 2019
a(n) ~ 13 * 2^(8*n+3/2) / (3^(3*n+7/2) * sqrt(Pi*n)). - Amiram Eldar, Sep 06 2025
Showing 1-2 of 2 results.