A004394 Superabundant [or super-abundant] numbers: n such that sigma(n)/n > sigma(m)/m for all m < n, sigma(n) being A000203(n), the sum of the divisors of n.
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 21621600
Offset: 1
References
- R. Honsberger, Mathematical Gems, M.A.A., 1973, p. 112.
- J. Sandor, "Abundant numbers", In: M. Hazewinkel, Encyclopedia of Mathematics, Supplement III, Kluwer Acad. Publ., 2002 (see pp. 19-21).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.
Links
- D. Kilminster, Table of n, a(n) for n = 1..2000 (extends to n = 8436 in the comments; first 500 terms from T. D. Noe)
- A. Akbary and Z. Friggstad, Superabundant numbers and the Riemann hypothesis, Amer. Math. Monthly, 116 (2009), 273-275.
- L. Alaoglu and P. Erdős, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56 (1944), 448-469. Errata.
- Christian Axler, Inequalities involving the primorial counting function, arXiv:2406.04018 [math.NT], 2024. See p. 12.
- Yu. Bilu, P. Habegger, and L. Kühne, Effective bounds for singular units, arXiv:1805.07167 [math.NT], 2018.
- Benjamin Braun and Brian Davis, Antichain Simplices, arXiv:1901.01417 [math.CO], 2019.
- Keith Briggs, Abundant numbers and the Riemann Hypothesis, Experimental Math., Vol. 16 (2006), p. 251-256.
- Tibor Burdette and Ian Stewart, Counterexamples to a Conjecture by Alaoglu and Erdős, arXiv:2009.03306 [math.NT], 2020.
- Geoffrey Caveney, Jean-Louis Nicolas and Jonathan Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis, INTEGERS 11 (2011), #A33.
- Geoffrey Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, arXiv preprint arXiv:1112.6010 [math.NT], 2011. - From _N. J. A. Sloane_, Apr 14 2012
- Geoffrey Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, Ramanujan J., 29 (2012), 359-384.
- François Clément and Stefan Steinerberger, On the largest singular vector of the Redheffer matrix, arXiv:2502.09489 [math.NT], 2025. See p. 2.
- P. Erdős and J.-L. Nicolas, Répartition des nombres superabondants (Text in French), Bulletin de la S. M. F., tome 103 (1975), pp. 65-90.
- F. Jokar, On k-layered numbers and some labeling related to k-layered numbers, arXiv:2003.11309 [math.NT], 2020.
- Stepan Kochemazov, Oleg Zaikin, Eduard Vatutin, and Alexey Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, J. Int. Seq., Vol. 23 (2020), Article 20.1.2.
- J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (#6, 2002), 534-543.
- A. Morkotun, On the increase of Gronwall function value at the multiplication of its argument by a prime, arXiv preprint arXiv:1307.0083 [math.NT], 2013.
- S. Nazardonyavi and S. Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, arXiv preprint arXiv:1211.2147 [math.NT], 2012.
- S. Nazardonyavi and S. Yakubovich, Delicacy of the Riemann hypothesis and certain subsequences of superabundant numbers, arXiv preprint arXiv:1306.3434 [math.NT], 2013.
- S. Nazardonyavi and S. Yakubovich, Extremely Abundant Numbers and the Riemann Hypothesis, Journal of Integer Sequences, 17 (2014), Article 14.2.8.
- Walter Nissen, Abundancy : Some Resources.
- T. D. Noe, First 500 superabundant numbers.
- T. D. Noe, First 1000000 superabundant numbers (21 MB, zipped).
- S. Sivasankaranarayana Pillai, Highly abundant numbers, Bulletin of the Calcutta Mathematical Society, Vol. 35, No. 1 (1943), pp. 141-156.
- S. Sivasankaranarayana Pillai, On numbers analogous to highly composite numbers of Ramanujan, Rajah Sir Annamalai Chettiar Commemoration Volume, ed. Dr. B. V. Narayanaswamy Naidu, Annamalai University, 1941, pp. 697-704.
- S. Ramanujan, Highly composite numbers, Annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J., 1 (1997), 119-153.
- K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller Numbers, Journal of Number Theory, Volume 133, Issue 4, April 2013, pp. 1135-1155.
- T. Schwabhäuser, Preventing Exceptions to Robin's Inequality, arXiv preprint arXiv:1308.3678 [math.NT], 2013.
- Eric Weisstein's World of Mathematics, Superabundant Number.
- Wikipedia, Superabundant number.
Crossrefs
Programs
-
Mathematica
a=0; Do[b=DivisorSigma[1, n]/n; If[b>a, a=b; Print[n]], {n, 1, 10^7}] (* Second program: convert all 8436 terms in b-file into a list of terms: *) f[w_] := Times @@ Flatten@ {Complement[#1, Union[#2, #3]], Product[Prime@ i, {i, PrimePi@ #}] & /@ #2, Factorial /@ #3} & @@ ToExpression@ {StringSplit[w, ?(! DigitQ@ # &)], StringCases[w, (x : DigitCharacter ..) ~~ "#" :> x], StringCases[w, (x : DigitCharacter ..) ~~ "!" :> x]}; Map[Which[StringTake[#, 1] == {"#"}, f@ Last@ StringSplit@ Last@ #, StringTake[#, 1] == {}, Nothing, True, ToExpression@ StringSplit[#][[1, -1]]] &, Drop[Import["b004394.txt", "Data"], 3] ] (* _Michael De Vlieger, May 08 2018 *)
-
PARI
print1(r=1);forstep(n=2,1e6,2,t=sigma(n,-1);if(t>r,r=t;print1(", "n))) \\ Charles R Greathouse IV, Jul 19 2011
Formula
a(n+1) <= 2*a(n). - A.H.M. Smeets, Jul 10 2021
Extensions
Name edited by Peter Munn, Mar 13 2019
Comments