A004401 Least number of edges in graph containing all trees on n nodes.
0, 1, 2, 4, 6, 8, 11, 13, 16, 18
Offset: 1
References
- R. L. Graham, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- F. R. K. Chung and R. L. Graham, On graphs which contain all small trees, J. Combinatorial Theory Ser. B 24 (1978), no. 1, 14--23. MR0505812 (58 #21808a)
- F. R. K. Chung, R. L. Graham and N. Pippenger, On graphs which contain all small trees. II. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 213-223. Colloq. Math. Soc. Janos Bolyai, 18. North-Holland, Amsterdam, 1978.
- Manfred Scheucher, Sage Program
- Manfred Scheucher, Graph on 10 vertices and 18 edges containing all trees on 10 vertices.
- Paul Tabatabai, Exhaustive search proving a(9) = 16. (Sage script)
- Paul Tabatabai, Graph on 9 vertices and 16 edges containing all trees on 9 vertices.
- Eric Weisstein's World of Mathematics, Fully Forested Graph.
- Index entries for sequences related to trees
Extensions
a(9) by Paul Tabatabai, Jul 17 2016
a(10) by Manfred Scheucher, Jan 25 2018
Comments