cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004531 Number of integer solutions to x^2 + 4 * y^2 = n.

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 4, 2, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 8, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 4, 0, 0, 8, 4, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 8, 0, 0, 8, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 12, 4, 0, 0, 8
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.

Crossrefs

Programs

  • Mathematica
    CoefficientList[EllipticTheta[3, 0, x]*EllipticTheta[3, 0, x^4] + O[x]^105, x] (* Jean-François Alcover, Nov 05 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 4], n)[n])}; /* Michael Somos, Jul 04 2005 */
    
  • PARI
    {a(n) = local(A, e1, e2, e4); if( n<0, 0, A = x * O(x^n); e1 = eta(x^2 + A); e2 = eta(x^4 + A); e4 = eta(x^8 + A); polcoeff( (e2^12 + e1^8 * e4^4 + 4 * x * e1^4 * e4^8) / (2 * e1^4 * e2^2 * e4^4), n))};
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [4, 1])
    Q.representation_number_list(105) # Peter Luschny, Jun 20 2014

Formula

Expansion of (eta(q^2) * eta(q^8))^5 / (eta(q)^2 * eta(q^4)^4 * eta(q^16)^2) in powers of q.
Expansion of phi(x) * phi(x^4) = phi(x^4)^2 + 2 * x * psi(x^4)^2 in powers of x where phi(x), psi(x) are Ramanujan theta functions.
Expansion of (theta2^2(q^2) + theta3^2(q^2) + theta4^2(q^2)) / 2 in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, 1, 2, -3, 2, -4, 2, -3, 2, 1, 2, -3, 2, -2, ...]. - Michael Somos, Jun 20 2014
G.f.: Sum_{i,j} x^(i^2 + 4 * j^2).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A004018(n). a(4*n + 1) = A004020(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Oct 15 2022