cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A004018 Theta series of square lattice (or number of ways of writing n as a sum of 2 squares). Often denoted by r(n) or r_2(n).

Original entry on oeis.org

1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, 0, 0, 12, 8, 0, 0, 8, 0, 0, 4, 0, 8, 0, 4, 8, 0, 0, 8, 8, 0, 0, 0, 8, 0, 0, 0, 4, 12, 0, 8, 8, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 4, 16, 0, 0, 8, 0, 0, 0, 4, 8, 8, 0, 0, 0, 0, 0, 8, 4, 8, 0, 0, 16, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 8, 4, 0, 12, 8
Offset: 0

Views

Author

Keywords

Comments

Number of points in square lattice on the circle of radius sqrt(n). Equivalently, number of Gaussian integers of norm n (cf. Conway-Sloane, p. 106).
Let b(n)=A004403(n), then Sum_{k=1..n} a(k)*b(n-k) = 1. - John W. Layman
Theta series of D_2 lattice.
Number 6 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The zeros in this sequence correspond to those integers with an equal number of 4k+1 and 4k+3 divisors, or equivalently to those that have at least one 4k+3 prime factor with an odd exponent (A022544). - Ant King, Mar 12 2013
If A(q) = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + ... denotes the o.g.f. of this sequence then the function F(q) := 1/4*(A(q^2) - A(q^4)) = ( Sum_{n >= 0} q^(2*n+1)^2 )^2 is the o.g.f. for counting the ways a positive integer n can be written as the sum of two positive odd squares. - Peter Bala, Dec 13 2013
Expansion coefficients of (2/Pi)*K, with the real quarter period K of elliptic functions, as series of the Jacobi nome q, due to (2/Pi)*K = theta_3(0,q)^2. See, e.g., Whittaker-Watson, p. 486. - Wolfdieter Lang, Jul 15 2016
Sum_{k=0..n} a(n) = A057655(n). Robert G. Wilson v, Dec 22 2016
Limit_{n->oo} (a(n)/n - Pi*log(n)) = A062089: Sierpinski's constant. - Robert G. Wilson v, Dec 22 2016
The mean value of a(n) is Pi, see A057655 for more details. - M. F. Hasler, Mar 20 2017

Examples

			G.f. = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + 4*q^8 + 4*q^9 + 8*q^10 + 8*q^13 + 4*q^16 + 8*q^17 + 4*q^18 + 8*q^20 + 12*q^25 + 8*q^26 + ... . - _John Cannon_, Dec 30 2006
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16 (7), r(n).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.23).
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, p. 32, Lemma 2 (with the proof), p. 116, (9.10) first formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 133.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 240, r(n).
  • W. König and J. Sprekels, Karl Weierstraß (1815-1897), Springer Spektrum, Wiesbaden, 2016, p. 186-187 and p. 280-281.
  • C. D. Olds, A. Lax and G. P. Davidoff, The Geometry of Numbers, Math. Assoc. Amer., 2000, p. 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 244-245.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.

Crossrefs

Row d=2 of A122141 and of A319574, 2nd column of A286815.
Partial sums - 1 give A014198.
A071385 gives records; A071383 gives where records occur.

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A004018List(len) = JacobiTheta3(len, 2)
    A004018List(102) |> println # Peter Luschny, Mar 12 2018
    
  • Magma
    Basis( ModularForms( Gamma1(4), 1), 100) [1]; /* Michael Somos, Jun 10 2014 */
    
  • Maple
    (sum(x^(m^2),m=-10..10))^2;
    # Alternative:
    A004018list := proc(len) series(JacobiTheta3(0, x)^2, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end:
    t1 := A004018list(102);
    r2 := n -> t1[n+1]; # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[2,Range[0,110]] (* Harvey P. Dale, Oct 10 2011 *)
    a[ n_] := SquaresR[ 2, n]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2, {q, 0, n}]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 10 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 4 Sum[ KroneckerSymbol[-4, d], {d, Divisors@n}]]; (* or *) a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^10/(QPochhammer[ q] QPochhammer[ q^4])^4, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = polcoeff( 1 + 4 * sum( k=1, n, x^k / (1 + x^(2*k)), x * O(x^n)), n)}; /* Michael Somos, Mar 14 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Jul 19 2004 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 1], n)[n])}; /* Michael Somos, May 13 2005 */
    
  • PARI
    a(n)=if(n==0,return(1)); my(f=factor(n)); 4*prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, if(f[i,2]%2 && f[i,1]>2, 0, 1))) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from sympy import factorint
    def a(n):
        if n == 0: return 1
        an = 4
        for pi, ei in factorint(n).items():
           if pi%4 == 1: an *= ei+1
           elif pi%4 == 3 and ei%2: return 0
        return an
    print([a(n) for n in range(102)]) # Michael S. Branicky, Sep 24 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A004018(n): return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items())<<2 if n else 1 # Chai Wah Wu, Jul 07 2022, corrected Jun 21 2024.
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*2)
    Q.representation_number_list(102) # Peter Luschny, Jun 20 2014
    

Formula

Expansion of theta_3(q)^2 = (Sum_{n=-oo..+oo} q^(n^2))^2 = Product_{m>=1} (1-q^(2*m))^2 * (1+q^(2*m-1))^4; convolution square of A000122.
Factor n as n = p1^a1 * p2^a2 * ... * q1^b1 * q2^b2 * ... * 2^c, where the p's are primes == 1 (mod 4) and the q's are primes == 3 (mod 4). Then a(n) = 0 if any b is odd, otherwise a(n) = 4*(1 + a1)*(1 + a2)*...
G.f. = s(2)^10/(s(1)^4*s(4)^4), where s(k) := subs(q=q^k, eta(q)) and eta(q) is Dedekind's function, cf. A010815. [Fine]
a(n) = 4*A002654(n), n > 0.
Expansion of eta(q^2)^10 / (eta(q) * eta(q^4))^4 in powers of q. - Michael Somos, Jul 19 2004
Expansion of ( phi(q)^2 + phi(-q)^2 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 - (v - w) * 4 * w. - Michael Somos, Jul 19 2004
Euler transform of period 4 sequence [4, -6, 4, -2, ...]. - Michael Somos, Jul 19 2004
Moebius transform is period 4 sequence [4, 0, -4, 0, ...]. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2 (t/i) f(t) where q = exp(2 Pi i t).
The constant sqrt(Pi)/Gamma(3/4)^2 produces the first 324 terms of the sequence when expanded in base exp(Pi), 450 digits of the constant are necessary. - Simon Plouffe, Mar 03 2011
a(n) = A004531(4*n). a(n) = 2*A105673(n), if n>0.
Let s = 16*q*(E1*E4^2/E2^3)^8 where Ek = Product_{n>=1} (1-q^(k*n)) (s=k^2 where k is elliptic k), then the g.f. is hypergeom([+1/2, +1/2], [+1], s) (expansion of 2/Pi*ellipticK(k) in powers of q). - Joerg Arndt, Aug 15 2011
Dirichlet g.f. Sum_{n>=1} a(n)/n^s = 4*zeta(s)*L_(-4)(s), where L is the D.g.f. of the (shifted) A056594. [Raman. J. 7 (2003) 95-127]. - R. J. Mathar, Jul 02 2012
a(n) = floor(1/(n+1)) + 4*floor(cos(Pi*sqrt(n))^2) - 4*floor(cos(Pi*sqrt(n/2))^2) + 8*Sum_{i=1..floor(n/2)} floor(cos(Pi*sqrt(i))^2)*floor(cos(Pi*sqrt(n-i))^2). - Wesley Ivan Hurt, Jan 09 2013
From Wolfdieter Lang, Aug 01 2016: (Start)
A Jacobi identity: theta_3(0, q)^2 = 1 + 4*Sum_{r>=0} (-1)^r*q^(2*r+1)/(1 - q^(2*r+1)). See, e.g., the Grosswald reference (p. 15, p. 116, but p. 32, Lemma 2 with the proof, has the typo r >= 1 instead of r >= 0 in the sum, also in the proof). See the link with the Jacobi-Legendre letter.
Identity used by Weierstraß (see the König-Sprekels book, p. 187, eq. (5.12) and p. 281, with references, but there F(x) from (5.11) on p. 186 should start with nu =1 not 0): theta_3(0, q)^2 = 1 + 4*Sum_{n>=1} q^n/(1 + q^(2*n)). Proof: similar to the one of the preceding Jacobi identity. (End)
a(n) = (4/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
G.f.: Theta_3(q)^2 = hypergeometric([1/2, 1/2],[1],lambda(q)), with lambda(q) = Sum_{j>=1} A115977(j)*q^j. See the Kontsevich and Zagier link, with Theta -> Theta_3, z -> 2*z and q -> q^2. - Wolfdieter Lang, May 27 2018

A020668 Numbers of the form x^2 + 4*y^2.

Original entry on oeis.org

0, 1, 4, 5, 8, 9, 13, 16, 17, 20, 25, 29, 32, 36, 37, 40, 41, 45, 49, 52, 53, 61, 64, 65, 68, 72, 73, 80, 81, 85, 89, 97, 100, 101, 104, 109, 113, 116, 117, 121, 125, 128, 136, 137, 144, 145, 148, 149, 153, 157, 160, 164, 169, 173, 180, 181, 185, 193, 196, 197, 200, 205, 208
Offset: 1

Views

Author

Keywords

Comments

x^2 + 4y^2 has discriminant -16.
Numbers that can be expressed as both the sum of two squares and the difference of two squares; the intersection of sequences A001481 and A042965. - T. D. Noe, Feb 05 2003
A004531(n) is nonzero if and only if n is of the form x^2 + 4*y^2. - Michael Somos, Jan 05 2012
These are the sum of two squares that are congruent to 0 or 1 (mod 4), and thus that are also the difference of two squares. - Jean-Christophe Hervé, Oct 25 2015

Crossrefs

Cf. A001481, A004531, A042965, A097269. For primes see A002144.

Programs

  • Magma
    [n: n in [0..208] | NormEquation(4, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
  • Mathematica
    Select[Range[0, 300], SquaresR[2, #] != 0 && Mod[#, 4] != 2&] (* Jean-François Alcover, May 13 2017 *)
  • PARI
    for(n=0, 1e3, if(if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 4], n)[n]) != 0, print1(n, ", "))) \\ Altug Alkan, Oct 29 2015
    

Formula

Complement of A097269 in A001481. - Jean-Christophe Hervé, Oct 25 2015

A133675 Negative discriminants with form class number 1 (negated).

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163
Offset: 1

Views

Author

N. J. A. Sloane, May 16 2003

Keywords

Comments

The list on p. 260 of Cox is missing -12, the list in Theorem 7.30 on p. 149 is correct. - Andrew V. Sutherland, Sep 02 2012
Let b(k) be the number of integer solutions of f(x,y) = k, where f(x,y) is the principal binary quadratic form with discriminant d<0 (i.e., f(x,y) = x^2 - (d/4)*y^2 if 4|d, x^2 + x*y + ((1-d)/4)*y^2 otherwise), then this sequence lists |d| such that {b(k)/b(1): k>=1} is multiplicative. See Crossrefs for the actual sequences. - Jianing Song, Nov 20 2019

References

  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, New York, 1989, pp. 149, 260.
  • D. E. Flath, Introduction to Number Theory, Wiley-Interscience, 1989.

Crossrefs

The sequences {b(k): k>=0}: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A033716 (d=-12), A004531 (d=-16), A028641 (d=-19), A138805 (d=-27), A033719 (d=-28), A138811 (d=-43), A318984 (d=-67), A318985 (d=-163).
The sequences {b(k)/b(1): k>=1}: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A096936 (d=-12), A113406 (d=-16), A035171 (d=-19), A138806 (d=-27), A110399 (d=-28), A035147 (d=-43), A318982 (d=-67), A318983 (d=-163).

Programs

  • PARI
    ok(n)={(-n)%4<2 && quadclassunit(-n).no == 1} \\ Andrew Howroyd, Jul 20 2018

Extensions

Corrected by David Brink, Dec 29 2007

A004020 Theta series of square lattice with respect to edge.

Original entry on oeis.org

2, 4, 2, 4, 4, 0, 6, 4, 0, 4, 4, 4, 2, 4, 0, 4, 8, 0, 4, 0, 2, 8, 4, 0, 4, 4, 0, 4, 4, 4, 2, 8, 0, 0, 4, 0, 8, 4, 4, 4, 0, 0, 6, 4, 0, 4, 8, 0, 4, 4, 0, 8, 0, 0, 0, 8, 6, 4, 4, 0, 4, 4, 0, 0, 4, 4, 8, 4, 0, 4, 4, 0, 6, 4, 0, 0, 8, 0, 4, 4, 0, 12, 0, 4, 4, 0, 0, 4, 4, 0, 2, 8, 4, 4, 8, 0, 0, 4, 0, 4, 4, 4, 4, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of solutions in integers of n = x^2 + y^2 + y.

Examples

			G.f. = 2 + 4*x + 2*x^2 + 4*x^3 + 4*x^4 + 6*x^6 + 4*x^7 + 4*x^9 + 4*x^10 + ...
G.f. = 2*q + 4*q^5 + 2*q^9 + 4*q^13 + 4*q^17 + 6*q^25 + 4*q^29 + 4*q^37 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x] / x^(1/4), {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
    s = 2*QPochhammer[q^2]^4/QPochhammer[q]^2+O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); 2 * polcoeff( eta(x^2 A)^4 / eta(x + A)^2, n))};
    
  • PARI
    {a(n) = 2 * if( n<1, n==0, polcoeff( sum(k=0, (sqrtint(8*n + 1) - 1)\2, x^(k*(k + 1)/2), x*O(x^n))^2, n))};

Formula

G.f.: 2 * (Sum_{k>0} x^((k^2 - k)/2))^2 = (Sum_{k in Z} x^(k^2 + k)) * (Sum_{k in Z} x^(k^2)).
Expansion of q^(-1/2) * c(q) / 2 in powers of q^2 where c(q) is the third function in the quadratic Gauss AGM. - Michael Somos, Feb 10 2006
Expansion of 2 * phi(x) * psi(x^2) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 10 2006
a(n) = 2*A008441(n) = A004531(4*n + 1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi (A000796). - Amiram Eldar, Oct 15 2022

A113406 Half the number of integer solutions to x^2 + 4 * y^2 = n.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 6, 2, 0, 0, 4, 0
Offset: 1

Views

Author

Michael Somos, Oct 28 2005

Keywords

Examples

			x + 2*x^4 + 2*x^5 + 2*x^8 + x^9 + 2*x^13 + 2*x^16 + 2*x^17 + 4*x^20 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.

Crossrefs

Programs

  • Mathematica
    s = (EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^4] - 1)/(2 q) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 4], n)[n])}
    
  • PARI
    {a(n) = if( n<1, 0, if( n%4==1, sumdiv( n, d, (-1)^(d\2)), if( n%4==0, 2 * sumdiv( n, d, kronecker( -4, d)))))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p = A[k,1], e = A[k,2]; if( p==2, 2 * (e>1), if( p%4==3, (1 + (-1)^e) / 2, e+1)))))}

Formula

a(n) is multiplicative with a(2) = 0, a(2^e) = 2 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4)
G.f.: (theta_3(q) * theta_3(q^4) - 1) / 2.
a(4*n + 2) = a(4*n + 3) = 0. A004531(n) = 2 * a(n) if n>0. a(4*n + 1) = A008441(n). A004018(n) = 2 * a(4*n) if n>0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 = 0.785398... (A003881). - Amiram Eldar, Oct 15 2022

A134014 Expansion of phi(-q) * phi(q^4) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 0, 4, -4, 0, 0, 4, -2, 0, 0, 0, -4, 0, 0, 4, -4, 0, 0, 8, 0, 0, 0, 0, -6, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 4, -4, 0, 0, 8, -4, 0, 0, 0, -4, 0, 0, 0, -2, 0, 0, 8, -4, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 4, -8, 0, 0, 8, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 8, -2
Offset: 0

Views

Author

Michael Somos, Oct 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 4*q^4 - 4*q^5 + 4*q^8 - 2*q^9 - 4*q^13 + 4*q^16 - 4*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^4], {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, if( n%4 < 2, (n%2*-6 + 4) * sumdiv(n, d, kronecker(-4, d))))};
    
  • PARI
    {a(n) = (-1)^n * if( n<1, n==0, 2 * qfrep([1, 0; 0, 4], n)[n])};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A)^5 / eta(x^2 + A) / eta(x^4 + A)^2 / eta(x^16 + A)^2, n))};

Formula

Expansion of eta(q)^2 * eta(q^8)^5 / (eta(q^2) * eta(q^4)^2 * eta(q^16)^2) in powers of q.
Euler transform of period 16 sequence [ -2, -1, -2, 1, -2, -1, -2, -4, -2, -1, -2, 1, -2, -1, -2, -2, ...].
Moebius transform is period 16 sequence [ -2, 2, 2, 4, -2, -2, 2, 0, -2, 2, 2, -4, -2, -2, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134013.
a(4*n + 2) = a(4*n + 3) = 0.
G.f.: 1 - 2 * ( x / (1 + x^2) + x^3 / (1 + x^6) - 2 * x^4 / (1 + x^8) + ... ).
a(n) = (-1)^n * A004531(n). a(n) = -2 * A134015(n) unless n=0. a(4*n) = A004018(n). a(4*n+1) = - A004020(n).
Showing 1-6 of 6 results.