cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A002144 Pythagorean primes: primes of the form 4*k + 1.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617
Offset: 1

Views

Author

Keywords

Comments

Rational primes that decompose in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
These are the prime terms of A009003.
-1 is a quadratic residue mod a prime p if and only if p is in this sequence.
Sin(a(n)*Pi/2) = 1 with Pi = 3.1415..., see A070750. - Reinhard Zumkeller, May 04 2002
If at least one of the odd primes p, q belongs to the sequence, then either both or neither of the congruences x^2 = p (mod q), x^2 = q (mod p) are solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Odd primes such that binomial(p-1, (p-1)/2) == 1 (mod p). - Benoit Cloitre, Feb 07 2004
Primes that are the hypotenuse of a right triangle with integer sides. The Pythagorean triple is {A002365(n), A002366(n), a(n)}.
Also, primes of the form a^k + b^k, k > 1. - Amarnath Murthy, Nov 17 2003
The square of a(n) is the average of two other squares. This fact gives rise to a class of monic polynomials x^2 + bx + c with b = a(n) that will factor over the integers regardless of the sign of c. See A114200. - Owen Mertens (owenmertens(AT)missouristate.edu), Nov 16 2005
Also such primes p that the last digit is always 1 for the Nexus numbers of form n^p - (n-1)^p. - Alexander Adamchuk, Aug 10 2006
The set of Pythagorean primes is a proper subset of the set of positive fundamental discriminants (A003658). - Paul Muljadi, Mar 28 2008
A079260(a(n)) = 1; complement of A137409. - Reinhard Zumkeller, Oct 11 2008
From Artur Jasinski, Dec 10 2008: (Start)
If we take 4 numbers: 1, A002314(n), A152676(n), A152680(n) then multiplication table modulo a(n) is isomorphic to the Latin square:
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic to the multiplication table of {1, i, -i, -1} where i is sqrt(-1), A152680(n) is isomorphic to -1, A002314(n) with i or -i and A152676(n) vice versa -i or i. 1, A002314(n), A152676(n), A152680(n) are subfield of Galois field [a(n)]. (End)
Primes p such that the arithmetic mean of divisors of p^3 is an integer. There are 2 sequences of such primes: this one and A002145. - Ctibor O. Zizka, Oct 20 2009
Equivalently, the primes p for which the smallest extension of F_p containing the square roots of unity (necessarily F_p) contains the 4th roots of unity. In this respect, the n = 2 case of a family of sequences: see n=3 (A129805) and n=5 (A172469). - Katherine E. Stange, Feb 03 2010
Subsequence of A007969. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = 1.
k^k - 1 is divisible by 4*k + 1 if 4*k + 1 is a prime (see Dickson reference). - Gary Detlefs, May 22 2013
Not only are the squares of these primes the sum of two nonzero squares, but the primes themselves are also. 2 is the only prime equal to the sum of two nonzero squares and whose square is not. 2 is therefore not a Pythagorean prime. - Jean-Christophe Hervé, Nov 10 2013
The statement that these primes are the sum of two nonzero squares follows from Fermat's theorem on the sum of two squares. - Jerzy R Borysowicz, Jan 02 2019
The decompositions of the prime and its square into two nonzero squares are unique. - Jean-Christophe Hervé, Nov 11 2013. See the Dickson reference, Vol. II, (B) on p. 227. - Wolfdieter Lang, Jan 13 2015
p^e for p prime of the form 4*k+1 and e >= 1 is the sum of 2 nonzero squares. - Jon Perry, Nov 23 2014
Primes p such that the area of the isosceles triangle of sides (p, p, q) for some integer q is an integer. - Michel Lagneau, Dec 31 2014
This is the set of all primes that are the average of two squares. - Richard R. Forberg, Mar 01 2015
Numbers k such that ((k-3)!!)^2 == -1 (mod k). - Thomas Ordowski, Jul 28 2016
This is a subsequence of primes of A004431 and also of A016813. - Bernard Schott, Apr 30 2022
In addition to the comment from Jean-Christophe Hervé, Nov 10 2013: All powers as well as the products of any of these primes are the sum of two nonzero squares. They are terms of A001481, which is closed under multiplication. - Klaus Purath, Nov 19 2023

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2 + d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2 - a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
  ---------------------------------
   p  a  b  t_1  c   d t_2 t_3  t_4
  ---------------------------------
   5  1  2   1   3   4   4   3    6
  13  2  3   3   5  12  12   5   30
  17  1  4   2   8  15   8  15   60
  29  2  5   5  20  21  20  21  210
  37  1  6   3  12  35  12  35  210
  41  4  5  10   9  40  40   9  180
  53  2  7   7  28  45  28  45  630
  ...
a(7) = 53 = A002972(7)^2 + (2*A002973(7))^2 = 7^2 + (2*1)^2 = 49 + 4, and this is the only way. - _Wolfdieter Lang_, Jan 13 2015
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • L. E. Dickson, "History of the Theory of Numbers", Chelsea Publishing Company, 1919, Vol I, page 386
  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 241, 243.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Cf. A004613 (multiplicative closure).
Apart from initial term, same as A002313.
For values of n see A005098.
Primes in A020668.

Programs

  • Haskell
    a002144 n = a002144_list !! (n-1)
    a002144_list = filter ((== 1) . a010051) [1,5..]
    -- Reinhard Zumkeller, Mar 06 2012, Feb 22 2011
    
  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 4*n + 1 ]; // Vincenzo Librandi, Nov 23 2014
    
  • Maple
    a := []; for n from 1 to 500 do if isprime(4*n+1) then a := [op(a),4*n+1]; fi; od: A002144 := n->a[n];
    # alternative
    A002144 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            5;
        else
            for a from procname(n-1)+4 by 4 do
                if isprime(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A002144(n),n=1..100) ; # R. J. Mathar, Jan 31 2024
  • Mathematica
    Select[4*Range[140] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 16 2006 *)
    Select[Prime[Range[150]],Mod[#,4]==1&] (* Harvey P. Dale, Jan 28 2021 *)
  • PARI
    select(p->p%4==1,primes(1000))
    
  • PARI
    A002144_next(p=A2144[#A2144])={until(isprime(p+=4),);p} /* NB: p must be of the form 4k+1. Beyond primelimit, this is *much* faster than forprime(p=...,, p%4==1 && return(p)). */
    A2144=List(5); A002144(n)={while(#A2144A002144_next())); A2144[n]}
    \\ M. F. Hasler, Jul 06 2024
    
  • Python
    from sympy import prime
    A002144 = [n for n in (prime(x) for x in range(1,10**3)) if not (n-1) % 4]
    # Chai Wah Wu, Sep 01 2014
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, range(1, 618, 4)))) # Michael S. Branicky, May 13 2021
    
  • SageMath
    def A002144_list(n): # returns all Pythagorean primes <= n
        return [x for x in prime_range(5,n+1) if x % 4 == 1]
    A002144_list(617) # Peter Luschny, Sep 12 2012

Formula

Odd primes of form x^2 + y^2, (x=A002331, y=A002330, with x < y) or of form u^2 + 4*v^2, (u = A002972, v = A002973, with u odd). - Lekraj Beedassy, Jul 16 2004
p^2 - 1 = 12*Sum_{i = 0..floor(p/4)} floor(sqrt(i*p)) where p = a(n) = 4*n + 1. [Shirali]
a(n) = A000290(A002972(n)) + A000290(2*A002973(n)) = A000290(A002331(n+1)) + A000290(A002330(n+1)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A002972(n)^2 + (2*A002973(n))^2, n >= 1. See the Jean-Christophe Hervé Nov 11 2013 comment. - Wolfdieter Lang, Jan 13 2015
a(n) = 4*A005098(n) + 1. - Zak Seidov, Sep 16 2018
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A088539.
Product_{k>=1} (1 + 1/a(k)^2) = A243380.
Product_{k>=1} (1 - 1/a(k)^3) = A334425.
Product_{k>=1} (1 + 1/a(k)^3) = A334424.
Product_{k>=1} (1 - 1/a(k)^4) = A334446.
Product_{k>=1} (1 + 1/a(k)^4) = A334445.
Product_{k>=1} (1 - 1/a(k)^5) = A334450.
Product_{k>=1} (1 + 1/a(k)^5) = A334449. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/A002145(k)) / (1 + 1/a(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/A002145(k)) / (1 - 1/a(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log((2*n*s)! * zeta(n*s) * abs(EulerE(n*s - 1)) / (Pi^(n*s) * 2^(2*n*s) * BernoulliB(2*n*s) * (2^(n*s) + 1) * (n*s - 1)!))/n, s >= 3 odd number. - Dimitris Valianatos, May 21 2020
Legendre symbol (-1, a(n)) = +1, for n >= 1. - Wolfdieter Lang, Mar 03 2021

A097269 Numbers that are the sum of two nonzero squares but not the difference of two nonzero squares.

Original entry on oeis.org

2, 10, 18, 26, 34, 50, 58, 74, 82, 90, 98, 106, 122, 130, 146, 162, 170, 178, 194, 202, 218, 226, 234, 242, 250, 274, 290, 298, 306, 314, 338, 346, 362, 370, 386, 394, 410, 442, 450, 458, 466, 482, 490, 514, 522, 530, 538, 554, 562, 578, 586, 610, 626, 634
Offset: 1

Views

Author

Ray Chandler, Aug 19 2004

Keywords

Comments

Intersection of A000404 (sum of squares) and complement of A024352 (difference of squares).
Numbers of the form 4k+2 = double of an odd number, with the odd number equal to the sum of 2 squares (sequence A057653). - Jean-Christophe Hervé, Oct 24 2015
Numbers that are the sum of two odd squares. - Jean-Christophe Hervé, Oct 25 2015

Examples

			2 = 1^2 + 1^2, 10 = 1^2 + 3^2, 18 = 3^2 + 3^2.
		

Crossrefs

Programs

  • PARI
    is(n)=if(n%4!=2,return(0)); my(f=factor(n/2)); for(i=1,#f[,1],if(bitand(f[i,2],1)==1&&bitand(f[i,1],3)==3, return(0))); 1 \\ Charles R Greathouse IV, May 31 2013
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A097269_gen(): # generator of terms
        return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n//2).items()),count(2,4))
    A097269_list = list(islice(A097269_gen(),30)) # Chai Wah Wu, Jun 28 2022

A057653 Odd numbers of form x^2 + y^2.

Original entry on oeis.org

1, 5, 9, 13, 17, 25, 29, 37, 41, 45, 49, 53, 61, 65, 73, 81, 85, 89, 97, 101, 109, 113, 117, 121, 125, 137, 145, 149, 153, 157, 169, 173, 181, 185, 193, 197, 205, 221, 225, 229, 233, 241, 245, 257, 261, 265, 269, 277, 281, 289, 293, 305, 313, 317, 325, 333, 337
Offset: 1

Views

Author

N. J. A. Sloane, Oct 15 2000

Keywords

Comments

Numbers with only odd prime factors and such that all prime factors congruent to 3 modulo 4 occur to an even exponent. - Jean-Christophe Hervé, Oct 24 2015
Odd terms of A020668. - Altug Alkan, Nov 19 2015
Also one half of the numbers that are the sum of two odd squares (without multiplicity). See A097269 for twice the numbers. - Wolfdieter Lang, Jan 12 2017

Crossrefs

Odd members of A001481.
Odd members of A020668.
Complement of A084109 in 4k+1 numbers (A016813).
Cf. A016754 (odd squares), A097269.

Programs

  • Maple
    readlib(issqr): for n from 1 to 1001 by 2 do for k from 0 to floor(sqrt(n)) do if issqr(n-k^2) then printf(`%d,`,n); break fi; od:od:
  • Mathematica
    fQ[n_] := Length@ Catch@ Do[If[IntegerQ@ Sqrt[n - k^2], Throw[{k, Sqrt[n - k^2]}], Nothing], {k, Floor[Sqrt@ n]^2}] != 0; Select[Range[1, 340, 2], fQ] (* Michael De Vlieger, Nov 13 2015 *)
  • PARI
    isok(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return(0))); 1;
    for(n=1, 1e3, if(isok(n) && n%2==1, print1(n", "))) \\ Altug Alkan, Nov 13 2015
    
  • PARI
    for(n=0, 1e3, if(if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 4], n)[n]) != 0 && n%2==1, print1(n, ", "))) \\ Altug Alkan, Nov 19 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A057653_gen(): # generator of terms
        return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),count(1,2))
    A057653_list = list(islice(A057653_gen(),30)) # Chai Wah Wu, Jun 28 2022

Formula

n = odd square * {product of distinct primes == 1 (mod 4)}.
a(n) = A097269(n)/2. - Wolfdieter Lang, Jan 12 2017

Extensions

More terms from James Sellers, Oct 16 2000

A263715 Nonnegative integers that are the sum or difference of two squares.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80
Offset: 1

Views

Author

Jean-Christophe Hervé, Oct 24 2015

Keywords

Comments

Contains all integers that are not equal to 2 (mod 4) (they are of the form y^2 - x^2) and those of the form 4k+2 = 2*(2k+1) with the odd number 2k+1 equal to the sum of two squares (A057653).

Examples

			2 = 1^2 + 1^2, 3 = 2^2 - 1^2, 4 = 2^2 + 0^2, 5 = 2^2 + 1^2 = 3^2 - 2^2.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Reduce[n == x^2 + y^2, {x, y}, Integers] || Reduce[0 <= y <= x && n == x^2 - y^2, {x, y}, Integers]; Reap[Do[If[r[n] =!= False, Sow[n]], {n, 0, 80}]][[2, 1]] (* Jean-François Alcover, Oct 25 2015 *)
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A263715_gen(): # generator of terms
        return filter(lambda n: n & 3 != 2 or all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),count(0))
    A263715_list = list(islice(A263715_gen(),30)) # Chai Wah Wu, Jun 28 2022

Formula

Union of A001481 (sums of two squares) and A042965 (differences of two squares).
Union of A042965 and 2*A057653 = A097269, with intersection of A042965 and A097269 = {}.
Union of A020668 (x^2+y^2 and a^2-b^2), A097269 (x^2+y^2, not a^2-b^2) and A263737 (not x^2+y^2, a^2-b^2).

A263737 Nonnegative integers that are the difference of two squares but not the sum of two squares.

Original entry on oeis.org

3, 7, 11, 12, 15, 19, 21, 23, 24, 27, 28, 31, 33, 35, 39, 43, 44, 47, 48, 51, 55, 56, 57, 59, 60, 63, 67, 69, 71, 75, 76, 77, 79, 83, 84, 87, 88, 91, 92, 93, 95, 96, 99, 103, 105, 107, 108, 111, 112, 115, 119, 120, 123, 124, 127, 129, 131, 132, 133, 135, 139, 140
Offset: 1

Views

Author

Jean-Christophe Hervé, Oct 25 2015

Keywords

Comments

Intersection of A022544 (not the sum of two squares) and A042965 (differences of two squares).
The sequence contains all 4k + 3 and no 4k + 2 integers, and some 4k (4*A022544) and 4k+1 (A084109) integers. First differences are thus 1, 2, 3 or 4, each occurring infinitely often.

Crossrefs

Programs

  • Mathematica
    rs[n_] := Reduce[n == x^2 + y^2, {x, y}, Integers]; rd[n_] := Reduce[0 <= y <= x && n == x^2 - y^2, {x, y}, Integers]; Reap[Do[If[rs[n] == False && rd[n] =!= False, Sow[n]], {n, 0, 140}]][[2, 1]] (* Jean-François Alcover, Oct 26 2015 *)
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A263737_gen(): # generator of terms
        return filter(lambda n:n & 3 != 2 and any(p & 3 == 3 and e & 1 for p, e in factorint(n).items()),count(0))
    A263737_list = list(islice(A263737_gen(),30)) # Chai Wah Wu, Jun 28 2022

A294774 a(n) = 2*n^2 + 2*n + 5.

Original entry on oeis.org

5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905
Offset: 0

Views

Author

Bruno Berselli, Nov 08 2017

Keywords

Comments

This is the case k = 9 of 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 (similar sequences are listed in Crossrefs section). Note that:
2*( 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 ) - k = ( 2*n + (1-(-1)^k)/2 )^2. From this follows an alternative definition for the sequence: Numbers h such that 2*h - 9 is a square. Therefore, if a(n) is a square then its base is a term of A075841.

Crossrefs

1st diagonal of A154631, 3rd diagonal of A055096, 4th diagonal of A070216.
Second column of Mathar's array in A016813 (Comments section).
Subsequence of A001481, A001983, A004766, A020668, A046711 and A057653 (because a(n) = (n+2)^2 + (n-1)^2); A097268 (because it is also a(n) = (n^2+n+3)^2 - (n^2+n+2)^2); A047270; A243182 (for y=1).
Similar sequences (see the first comment): A161532 (k=-14), A181510 (k=-13), A152811 (k=-12), A222182 (k=-11), A271625 (k=-10), A139570 (k=-9), (-1)*A147973 (k=-8), A059993 (k=-7), A268581 (k=-6), A090288 (k=-5), A054000 (k=-4), A142463 or A132209 (k=-3), A056220 (k=-2), A046092 (k=-1), A001105 (k=0), A001844 (k=1), A058331 (k=2), A051890 (k=3), A271624 (k=4), A097080 (k=5), A093328 (k=6), A271649 (k=7), A255843 (k=8), this sequence (k=9).

Programs

  • Maple
    seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017
  • Mathematica
    Table[2n^2+2n+5,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{5,9,17},50] (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017

Formula

O.g.f.: (5 - 6*x + 5*x^2)/(1 - x)^3.
E.g.f.: (5 + 4*x + 2*x^2)*exp(x).
a(n) = a(-1-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 5*A000217(n+1) - 6*A000217(n) + 5*A000217(n-1).
n*a(n) - Sum_{j=0..n-1} a(j) = A002492(n) for n>0.
a(n) = Integral_{x=0..2n+4} |3-x| dx. - Pedro Caceres, Dec 29 2020

A155564 Intersection of A002479 and A003136: N = a^2 + 2b^2 = c^2 + 3d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 3, 4, 9, 12, 16, 19, 25, 27, 36, 43, 48, 49, 57, 64, 67, 73, 75, 76, 81, 97, 100, 108, 121, 129, 139, 144, 147, 163, 169, 171, 172, 192, 193, 196, 201, 211, 219, 225, 228, 241, 243, 256, 268, 283, 289, 291, 292, 300, 304, 307, 313, 324, 331, 337, 361, 363
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Contains A155574 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155564(n,/* use optional 2nd arg to get other analogous sequences */c=[3,2]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,500, isA155564(n) & print1(n","))

A155565 Intersection of A001481 and A020669: N = a^2 + b^2 = c^2 + 5d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 4, 5, 9, 16, 20, 25, 29, 36, 41, 45, 49, 61, 64, 80, 81, 89, 100, 101, 109, 116, 121, 125, 144, 145, 149, 164, 169, 180, 181, 196, 205, 225, 229, 241, 244, 245, 256, 261, 269, 281, 289, 305, 320, 324, 349, 356, 361, 369, 389, 400, 401, 404, 405, 409, 421
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Contains A155575 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155565(n,/* use optional 2nd arg to get other analogous sequences */c=[5,1]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,500, isA155565(n) & print1(n","))

A155566 Intersection of A001481 and A002481: N = a^2 + b^2 = c^2 + 6d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 4, 9, 10, 16, 25, 36, 40, 49, 58, 64, 73, 81, 90, 97, 100, 106, 121, 144, 145, 160, 169, 193, 196, 202, 225, 232, 241, 250, 256, 265, 289, 292, 298, 313, 324, 337, 346, 360, 361, 388, 394, 400, 409, 424, 433, 441, 457, 484, 490, 505, 522, 529, 538, 576
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Contains A155576 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155566(n,/* use optional 2nd arg to get other analogous sequences */c=[6,1]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,600, isA155566(n) & print1(n","))

A155567 Intersection of A002479 and A020669 : N = a^2 + 2b^2 = c^2 + 5d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 4, 6, 9, 16, 24, 25, 36, 41, 49, 54, 64, 81, 86, 89, 96, 100, 121, 129, 134, 144, 150, 164, 166, 169, 196, 201, 214, 216, 225, 241, 246, 249, 256, 281, 289, 294, 321, 324, 326, 344, 356, 361, 369, 384, 400, 401, 409, 441, 449, 454, 484, 486, 489, 516, 521
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Contains A155577 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155567(n,/* use optional 2nd arg to get other analogous sequences */c=[5,2]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,600, isA155567(n) & print1(n","))
Showing 1-10 of 15 results. Next