A002365 Numbers y such that p^2 = x^2 + y^2, 0 < x < y, p = A002144(n).
4, 12, 15, 21, 35, 40, 45, 60, 55, 80, 72, 99, 91, 112, 105, 140, 132, 165, 180, 168, 195, 221, 208, 209, 255, 260, 252, 231, 285, 312, 308, 288, 299, 272, 275, 340, 325, 399, 391, 420, 408, 351, 425, 380, 459, 440, 420, 532, 520, 575, 465, 551, 612, 608, 609
Offset: 1
Keywords
Examples
The following table shows the relationship between several closely related sequences: Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b; a = A002331, b = A002330, t_1 = ab/2 = A070151; p^2 = c^2+d^2 with c < d; c = A002366, d = A002365, t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079, with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2). --------------------------------- .p..a..b..t_1..c...d.t_2.t_3..t_4 --------------------------------- .5..1..2...1...3...4...4...3....6 13..2..3...3...5..12..12...5...30 17..1..4...2...8..15...8..15...60 29..2..5...5..20..21..20..21..210 37..1..6...3..12..35..12..35..210 41..4..5..10...9..40..40...9..180 53..2..7...7..28..45..28..45..630 ................................. 3^2 + 4^2 = 5^2, giving x=3, y=4, p=5 and we have the first terms of A002366, the present sequence and A002144.
References
- A. J. C. Cunningham, Quadratic and Linear Tables. Hodgson, London, 1927, pp. 77-79.
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 60.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- A. J. C. Cunningham, Quadratic and Linear Tables, Hodgson, London, 1927 [Annotated scanned copy of selected pages]
Extensions
More terms from Ray Chandler, Jun 23 2004
Revised definition from M. F. Hasler, Feb 24 2009
Comments