cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A002144 Pythagorean primes: primes of the form 4*k + 1.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617
Offset: 1

Views

Author

Keywords

Comments

Rational primes that decompose in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
These are the prime terms of A009003.
-1 is a quadratic residue mod a prime p if and only if p is in this sequence.
Sin(a(n)*Pi/2) = 1 with Pi = 3.1415..., see A070750. - Reinhard Zumkeller, May 04 2002
If at least one of the odd primes p, q belongs to the sequence, then either both or neither of the congruences x^2 = p (mod q), x^2 = q (mod p) are solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Odd primes such that binomial(p-1, (p-1)/2) == 1 (mod p). - Benoit Cloitre, Feb 07 2004
Primes that are the hypotenuse of a right triangle with integer sides. The Pythagorean triple is {A002365(n), A002366(n), a(n)}.
Also, primes of the form a^k + b^k, k > 1. - Amarnath Murthy, Nov 17 2003
The square of a(n) is the average of two other squares. This fact gives rise to a class of monic polynomials x^2 + bx + c with b = a(n) that will factor over the integers regardless of the sign of c. See A114200. - Owen Mertens (owenmertens(AT)missouristate.edu), Nov 16 2005
Also such primes p that the last digit is always 1 for the Nexus numbers of form n^p - (n-1)^p. - Alexander Adamchuk, Aug 10 2006
The set of Pythagorean primes is a proper subset of the set of positive fundamental discriminants (A003658). - Paul Muljadi, Mar 28 2008
A079260(a(n)) = 1; complement of A137409. - Reinhard Zumkeller, Oct 11 2008
From Artur Jasinski, Dec 10 2008: (Start)
If we take 4 numbers: 1, A002314(n), A152676(n), A152680(n) then multiplication table modulo a(n) is isomorphic to the Latin square:
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic to the multiplication table of {1, i, -i, -1} where i is sqrt(-1), A152680(n) is isomorphic to -1, A002314(n) with i or -i and A152676(n) vice versa -i or i. 1, A002314(n), A152676(n), A152680(n) are subfield of Galois field [a(n)]. (End)
Primes p such that the arithmetic mean of divisors of p^3 is an integer. There are 2 sequences of such primes: this one and A002145. - Ctibor O. Zizka, Oct 20 2009
Equivalently, the primes p for which the smallest extension of F_p containing the square roots of unity (necessarily F_p) contains the 4th roots of unity. In this respect, the n = 2 case of a family of sequences: see n=3 (A129805) and n=5 (A172469). - Katherine E. Stange, Feb 03 2010
Subsequence of A007969. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = 1.
k^k - 1 is divisible by 4*k + 1 if 4*k + 1 is a prime (see Dickson reference). - Gary Detlefs, May 22 2013
Not only are the squares of these primes the sum of two nonzero squares, but the primes themselves are also. 2 is the only prime equal to the sum of two nonzero squares and whose square is not. 2 is therefore not a Pythagorean prime. - Jean-Christophe Hervé, Nov 10 2013
The statement that these primes are the sum of two nonzero squares follows from Fermat's theorem on the sum of two squares. - Jerzy R Borysowicz, Jan 02 2019
The decompositions of the prime and its square into two nonzero squares are unique. - Jean-Christophe Hervé, Nov 11 2013. See the Dickson reference, Vol. II, (B) on p. 227. - Wolfdieter Lang, Jan 13 2015
p^e for p prime of the form 4*k+1 and e >= 1 is the sum of 2 nonzero squares. - Jon Perry, Nov 23 2014
Primes p such that the area of the isosceles triangle of sides (p, p, q) for some integer q is an integer. - Michel Lagneau, Dec 31 2014
This is the set of all primes that are the average of two squares. - Richard R. Forberg, Mar 01 2015
Numbers k such that ((k-3)!!)^2 == -1 (mod k). - Thomas Ordowski, Jul 28 2016
This is a subsequence of primes of A004431 and also of A016813. - Bernard Schott, Apr 30 2022
In addition to the comment from Jean-Christophe Hervé, Nov 10 2013: All powers as well as the products of any of these primes are the sum of two nonzero squares. They are terms of A001481, which is closed under multiplication. - Klaus Purath, Nov 19 2023

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2 + d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2 - a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
  ---------------------------------
   p  a  b  t_1  c   d t_2 t_3  t_4
  ---------------------------------
   5  1  2   1   3   4   4   3    6
  13  2  3   3   5  12  12   5   30
  17  1  4   2   8  15   8  15   60
  29  2  5   5  20  21  20  21  210
  37  1  6   3  12  35  12  35  210
  41  4  5  10   9  40  40   9  180
  53  2  7   7  28  45  28  45  630
  ...
a(7) = 53 = A002972(7)^2 + (2*A002973(7))^2 = 7^2 + (2*1)^2 = 49 + 4, and this is the only way. - _Wolfdieter Lang_, Jan 13 2015
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • L. E. Dickson, "History of the Theory of Numbers", Chelsea Publishing Company, 1919, Vol I, page 386
  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 241, 243.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Cf. A004613 (multiplicative closure).
Apart from initial term, same as A002313.
For values of n see A005098.
Primes in A020668.

Programs

  • Haskell
    a002144 n = a002144_list !! (n-1)
    a002144_list = filter ((== 1) . a010051) [1,5..]
    -- Reinhard Zumkeller, Mar 06 2012, Feb 22 2011
    
  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 4*n + 1 ]; // Vincenzo Librandi, Nov 23 2014
    
  • Maple
    a := []; for n from 1 to 500 do if isprime(4*n+1) then a := [op(a),4*n+1]; fi; od: A002144 := n->a[n];
    # alternative
    A002144 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            5;
        else
            for a from procname(n-1)+4 by 4 do
                if isprime(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A002144(n),n=1..100) ; # R. J. Mathar, Jan 31 2024
  • Mathematica
    Select[4*Range[140] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 16 2006 *)
    Select[Prime[Range[150]],Mod[#,4]==1&] (* Harvey P. Dale, Jan 28 2021 *)
  • PARI
    select(p->p%4==1,primes(1000))
    
  • PARI
    A002144_next(p=A2144[#A2144])={until(isprime(p+=4),);p} /* NB: p must be of the form 4k+1. Beyond primelimit, this is *much* faster than forprime(p=...,, p%4==1 && return(p)). */
    A2144=List(5); A002144(n)={while(#A2144A002144_next())); A2144[n]}
    \\ M. F. Hasler, Jul 06 2024
    
  • Python
    from sympy import prime
    A002144 = [n for n in (prime(x) for x in range(1,10**3)) if not (n-1) % 4]
    # Chai Wah Wu, Sep 01 2014
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, range(1, 618, 4)))) # Michael S. Branicky, May 13 2021
    
  • SageMath
    def A002144_list(n): # returns all Pythagorean primes <= n
        return [x for x in prime_range(5,n+1) if x % 4 == 1]
    A002144_list(617) # Peter Luschny, Sep 12 2012

Formula

Odd primes of form x^2 + y^2, (x=A002331, y=A002330, with x < y) or of form u^2 + 4*v^2, (u = A002972, v = A002973, with u odd). - Lekraj Beedassy, Jul 16 2004
p^2 - 1 = 12*Sum_{i = 0..floor(p/4)} floor(sqrt(i*p)) where p = a(n) = 4*n + 1. [Shirali]
a(n) = A000290(A002972(n)) + A000290(2*A002973(n)) = A000290(A002331(n+1)) + A000290(A002330(n+1)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A002972(n)^2 + (2*A002973(n))^2, n >= 1. See the Jean-Christophe Hervé Nov 11 2013 comment. - Wolfdieter Lang, Jan 13 2015
a(n) = 4*A005098(n) + 1. - Zak Seidov, Sep 16 2018
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A088539.
Product_{k>=1} (1 + 1/a(k)^2) = A243380.
Product_{k>=1} (1 - 1/a(k)^3) = A334425.
Product_{k>=1} (1 + 1/a(k)^3) = A334424.
Product_{k>=1} (1 - 1/a(k)^4) = A334446.
Product_{k>=1} (1 + 1/a(k)^4) = A334445.
Product_{k>=1} (1 - 1/a(k)^5) = A334450.
Product_{k>=1} (1 + 1/a(k)^5) = A334449. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/A002145(k)) / (1 + 1/a(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/A002145(k)) / (1 - 1/a(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log((2*n*s)! * zeta(n*s) * abs(EulerE(n*s - 1)) / (Pi^(n*s) * 2^(2*n*s) * BernoulliB(2*n*s) * (2^(n*s) + 1) * (n*s - 1)!))/n, s >= 3 odd number. - Dimitris Valianatos, May 21 2020
Legendre symbol (-1, a(n)) = +1, for n >= 1. - Wolfdieter Lang, Mar 03 2021

A002330 Value of y in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 6, 8, 8, 9, 10, 10, 8, 11, 10, 11, 13, 10, 12, 14, 15, 13, 15, 16, 13, 14, 16, 17, 13, 14, 16, 18, 17, 18, 17, 19, 20, 20, 15, 17, 20, 21, 19, 22, 20, 21, 19, 20, 24, 23, 24, 18, 19, 25, 22, 25, 23, 26, 26, 22, 27, 26, 20, 25, 22, 26, 28, 25
Offset: 1

Views

Author

Keywords

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
		

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := []; for x from 0 to 50 do for y from x to 50 do p := x^2+y^2; if isprime(p) then a := [op(a),[p,x,y]]; fi; od: od: writeto(trans); for i from 1 to 158 do lprint(a[i]); od: # then sort the triples in "trans"
  • Mathematica
    Flatten[#, 1]&[Table[PowersRepresentations[Prime[k], 2, 2], {k, 1, 142}]][[All, 2]] (* Jean-François Alcover, Jul 05 2011 *)
  • PARI
    f(p)=my(s=lift(sqrt(Mod(-1,p))),x=p,t);if(s>p/2,s=p-s); while(s^2>p, t=s;s=x%s;x=t);s
    forprime(p=2,1e3,if(p%4-3,print1(f(p)", "))) \\ Charles R Greathouse IV, Apr 24 2012
    
  • PARI
    do(p)=qfbsolve(Qfb(1,0,1),p)[1]
    forprime(p=2,1e3,if(p%4-3,print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013
    
  • PARI
    print1(1); forprimestep(p=5,1e3,4, print1(", "qfbcornacchia(1,p)[1])) \\ Charles R Greathouse IV, Sep 15 2021

Formula

a(n) = A096029(n) + A096030(n) + 1, for n>1. - Lekraj Beedassy, Jul 21 2004
a(n+1) = Max(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010

A002331 Values of x in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 4, 2, 5, 3, 5, 4, 1, 3, 7, 4, 7, 6, 2, 9, 7, 1, 2, 8, 4, 1, 10, 9, 5, 2, 12, 11, 9, 5, 8, 7, 10, 6, 1, 3, 14, 12, 7, 4, 10, 5, 11, 10, 14, 13, 1, 8, 5, 17, 16, 4, 13, 6, 12, 1, 5, 15, 2, 9, 19, 12, 17, 11, 5, 14, 10, 18, 4, 6, 16, 20, 19, 10, 13, 4, 6, 15, 22, 11, 3, 5
Offset: 1

Views

Author

Keywords

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
		

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002330, A002313, A002144, A027862 (locates y=x+1).

Programs

  • Maple
    See A002330 for Maple program.
    # alternative
    A002331 := proc(n)
        A363051(A002313(n)) ;
    end proc:
    seq(A002331(n),n=1..100) ; # R. J. Mathar, Feb 01 2024
  • Mathematica
    pmax = 1000; x[p_] := Module[{x, y}, x /. ToRules[Reduce[0 <= x <= y && x^2 + y^2 == p, {x, y}, Integers]]]; For[n=1; p=2, pJean-François Alcover, Feb 26 2016 *)
  • PARI
    f(p)=my(s=lift(sqrt(Mod(-1,p))),x=p,t);if(s>p/2,s=p-s); while(s^2>p,t=s;s=x%s;x=t);s
    forprime(p=2,1e3,if(p%4-3,print1(sqrtint(p-f(p)^2)", ")))
    \\ Charles R Greathouse IV, Apr 24 2012
    
  • PARI
    do(p)=qfbsolve(Qfb(1,0,1),p)[2]
    forprime(p=2,1e3,if(p%4-3,print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013

Formula

a(n) = A096029(n) - A096030(n) for n > 1. - Lekraj Beedassy, Jul 16 2004
a(n+1) = Min(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A363051(A002313(n)). - R. J. Mathar, Jan 31 2024

A002365 Numbers y such that p^2 = x^2 + y^2, 0 < x < y, p = A002144(n).

Original entry on oeis.org

4, 12, 15, 21, 35, 40, 45, 60, 55, 80, 72, 99, 91, 112, 105, 140, 132, 165, 180, 168, 195, 221, 208, 209, 255, 260, 252, 231, 285, 312, 308, 288, 299, 272, 275, 340, 325, 399, 391, 420, 408, 351, 425, 380, 459, 440, 420, 532, 520, 575, 465, 551, 612, 608, 609
Offset: 1

Views

Author

Keywords

Examples

			The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
3^2 + 4^2 = 5^2, giving x=3, y=4, p=5 and we have the first terms of A002366, the present sequence and A002144.
		

References

  • A. J. C. Cunningham, Quadratic and Linear Tables. Hodgson, London, 1927, pp. 77-79.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 60.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Ray Chandler, Jun 23 2004
Revised definition from M. F. Hasler, Feb 24 2009

A002366 Numbers x such that x^2 + y^2 = p^2 = A002144(n)^2, x < y.

Original entry on oeis.org

3, 5, 8, 20, 12, 9, 28, 11, 48, 39, 65, 20, 60, 15, 88, 51, 85, 52, 19, 95, 28, 60, 105, 120, 32, 69, 115, 160, 68, 25, 75, 175, 180, 225, 252, 189, 228, 40, 120, 29, 145, 280, 168, 261, 220, 279, 341, 165, 231, 48, 368, 240, 35, 105, 200, 315, 300, 385, 52, 260, 259
Offset: 1

Views

Author

Keywords

Examples

			The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
		

References

  • A. J. C. Cunningham, Quadratic and Linear Tables. Hodgson, London, 1927, pp. 77-79.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 60.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Ray Chandler, Jun 23 2004
Corrected definition to require p=A002144(n), which defines the order of the terms. - M. F. Hasler, Feb 24 2009

A070151 a(n) is one fourth of the even leg of the unique primitive Pythagorean triangle with hypotenuse A002144(n).

Original entry on oeis.org

1, 3, 2, 5, 3, 10, 7, 15, 12, 20, 18, 5, 15, 28, 22, 35, 33, 13, 45, 42, 7, 15, 52, 30, 8, 65, 63, 40, 17, 78, 77, 72, 45, 68, 63, 85, 57, 10, 30, 105, 102, 70, 42, 95, 55, 110, 105, 133, 130, 12, 92, 60, 153, 152, 50, 143, 75, 138, 13, 65, 165, 27, 117, 190, 150, 187, 143, 70
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2002

Keywords

Comments

Consider sequence A002144 of primes congruent to 1 (mod 4) and equal to x^2 + y^2, with y>x given by A002330 and A002331; sequence gives values x*y/2.

Examples

			The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
n = 7: a(7) = 7, A002144(7) = 53 and 53^2 = 2809 = A070079(7)^2 + (4*a(7))^2 = 45^2 + (4*7)^2 = 2025 + 784. - _Wolfdieter Lang_, Jan 13 2015
		

Crossrefs

Formula

a(n) = A002330(n+1)*A002331(n+1)/2. - David Wasserman, May 12 2003
4*a(n) is the even positive integer with A080109(n) = A002144(n)^2 = A070079(n)^2 + (4*a(n))^2 in this unique decomposition (up to order). See A080109 for references. - Wolfdieter Lang, Jan 13 2015

Extensions

Edited. New name, moved the old one to the comment section. - Wolfdieter Lang, Jan 13 2015

A145046 a(n) = 2*A002330(n+1) * A002331(n+1).

Original entry on oeis.org

4, 12, 8, 20, 12, 40, 28, 60, 48, 80, 72, 20, 60, 112, 88, 140, 132, 52, 180, 168, 28, 60, 208, 120, 32, 260, 252, 160, 68, 312, 308, 288, 180, 272, 252, 340, 228, 40, 120, 420, 408, 280, 168, 380, 220, 440, 420, 532, 520, 48, 368, 240, 612, 608, 200, 572, 300, 552, 52, 260
Offset: 0

Views

Author

N. J. A. Sloane, Feb 25 2009

Keywords

Examples

			The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
		

Crossrefs

4 times A070151, or (apart from initial term) twice A145019.
Cf. A070079.

A080109 Square of primes of the form 4k+1 (A002144).

Original entry on oeis.org

25, 169, 289, 841, 1369, 1681, 2809, 3721, 5329, 7921, 9409, 10201, 11881, 12769, 18769, 22201, 24649, 29929, 32761, 37249, 38809, 52441, 54289, 58081, 66049, 72361, 76729, 78961, 85849, 97969, 100489, 113569, 121801, 124609, 139129
Offset: 1

Views

Author

Cino Hilliard, Mar 16 2003

Keywords

Comments

a(n) is the sum of two positive squares in only one way. See the Dickson reference, (B) p. 227.
a(n) is the hypotenuse of two and only two right triangles with integral legs (modulo leg exchange). See the Dickson reference, (A) p. 227.
In 1640 Fermat generalized the 3,4,5 triangle with the theorem: A prime of the form 4n+1 is the hypotenuse of one and only one right triangle with integral arms. The square of a prime of the form 4n+1 is the hypotenuse of two and only two... The cube of three and only three...

Examples

			a(7) = 2809 is the hypotenuse of triangles 1241, 2520, 2809 and 1484, 2385, 2809, and only of these.
a(7) = 53^2 = 2809 = 45^2 + (4*7)^2, and this is the only way. - _Wolfdieter Lang_, Jan 13 2015
		

References

  • L. E. Dickson, History of the Theory of Numbers, Volume II, Diophantine Analysis. Carnegie Institution Publ. No. 256, Vol II, Washington, DC, 1920, p. 227.
  • Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972, pp. 275-276.

Crossrefs

Programs

  • Mathematica
    Select[4 Range[96] + 1, PrimeQ]^2 (* Michael De Vlieger, Dec 27 2016 *)
  • PARI
    fermat(n) = { for(x=1,n, y=4*x+1; if(isprime(y),print1(y^2" ")) ) }

Formula

a(n) = A002144(n)^2 = A070079(n)^2 + (4*A070151(n))^2, for n >= 1. - Wolfdieter Lang, Jan 13 2015
From Amiram Eldar, Dec 02 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A243380
Product_{n>=1} (1 - 1/a(n)) = A088539. (End)

Extensions

Edited: Name changed, part of old name as comment. Comments added and changed. Dickson reference added. - Wolfdieter Lang, Jan 13 2015

A145010 a(n) = area of Pythagorean triangle with hypotenuse p, where p = A002144(n) = n-th prime == 1 (mod 4).

Original entry on oeis.org

6, 30, 60, 210, 210, 180, 630, 330, 1320, 1560, 2340, 990, 2730, 840, 4620, 3570, 5610, 4290, 1710, 7980, 2730, 6630, 10920, 12540, 4080, 8970, 14490, 18480, 9690, 3900, 11550, 25200, 26910, 30600, 34650, 32130, 37050, 7980, 23460, 6090, 29580, 49140, 35700
Offset: 1

Views

Author

M. F. Hasler, Feb 24 2009

Keywords

Comments

Pythagorean primes, i.e., primes of the form p = 4k+1 = A002144(n), have exactly one representation as sum of two squares: A002144(n) = x^2+y^2 = A002330(n+1)^2+A002331(n+1)^2. The corresponding (primitive) integer-sided right triangle with sides { 2xy, |x^2-y^2| } = { A002365(n), A002366(n) } has area xy|x^2-y^2| = a(n). For n>1 this is a(n) = 30*A068386(n).

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
  ---------------------------------
   p  a  b  t_1  c   d t_2 t_3  t_4
  ---------------------------------
   5  1  2   1   3   4   4   3    6
  13  2  3   3   5  12  12   5   30
  17  1  4   2   8  15   8  15   60
  29  2  5   5  20  21  20  21  210
  37  1  6   3  12  35  12  35  210
  41  4  5  10   9  40  40   9  180
  53  2  7   7  28  45  28  45  630
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 500, p = NextPrime[p], If[Mod[p, 4] == 1, area = x*y/2 /. ToRules[Reduce[0 < x <= y && p^2 == x^2 + y^2, {x, y}, Integers]]; Sow[area]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2015 *)
  • PARI
    forprime(p=1,499, p%4==1 | next; t=[p,lift(-sqrt(Mod(-1,p)))]; while(t[1]^2>p,t=[t[2],t[1]%t[2]]); print1(t[1]*t[2]*(t[1]^2-t[2]^2)","))
    
  • PARI
    {Q=Qfb(1,0,1);forprime(p=1,499,p%4==1|next;t=qfbsolve(Q,p); print1(t[1]*t[2]*(t[1]^2-t[2]^2)","))} \\ David Broadhurst

Formula

a(n) = A002365(n)*A002366(n)/2.
a(n) = x*y*(x^2-y^2), where x = A002330(n+1), y = A002331(n+1).

A253802 a(n) gives the odd leg of one of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. This is the smaller of the two possible odd legs.

Original entry on oeis.org

7, 65, 161, 41, 1081, 369, 1241, 671, 721, 3471, 959, 9401, 4681, 1695, 3281, 7599, 10199, 24521, 3439, 18335, 37241, 45241, 24465, 29281, 64001, 18561, 31855, 27761, 76601, 7825
Offset: 1

Views

Author

Wolfdieter Lang, Jan 14 2015

Keywords

Comments

The corresponding even legs are given in 4*A253803.
The legs of the other Pythagorean triangle with hypotenuse A080109(n) are given A253804(n) (odd) and A253805(n) (even).
Each fourth power of a prime of the form 1 (mod 4) (see A002144(n)^2 = A080175(n)) has exactly two representations as sum of two positive squares (Fermat). See the Dickson reference, (B) on p. 227.
This means that there are exactly two Pythagorean triangles (modulo leg exchange) for each hypotenuse A080109(n) = A002144(n)^2, n >= 1. See the Dickson reference, (A) on p. 227.
Note that the Pythagorean triangles are not always primitive. E.g., n = 2: (65, 4*39, 13^2) = 13*(5, 4*3, 13). For each prime congruent 1 (mod 4) (A002144) there is one and only one such non-primitive triangle with hypotenuse p^2 (just scale the unique primitive triangle with hypotenuse p with the factor p). Therefore, one of the two existing Pythagorean triangles with hypotenuse from A080109 is primitive and the other is imprimitive.

Examples

			n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4  =  a(7)^2 + (4*A253803(7))^2 = 1241^2 + (4*630)^2.
The other Pythagorean triangle with hypotenuse 53^2 = 2809 has odd leg A253804(7) = 2385 and even leg 4*A253305(7) = 4*371 = 1484: 53^4 = 2385^2 + (4*371)^2.
		

References

  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.

Crossrefs

Formula

A080175(n) = A002144(n)^4 = a(n)^2 + (4*A253803(n))^2,
n >= 1, that is,
a(n) = sqrt(A080175(n) - (4*A253803(n))^2), n >= 1.
Showing 1-10 of 13 results. Next