cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144954 a(n) = start of a sequence of at least n consecutive primes, p_1, p_2, ..., p_n (say), all == 1 mod 4, such that A(p_1) > A(p_2) > ... > A(p_n), where A(p) (see A145010) is the area of the Pythagorean triangle with hypotenuse p.

Original entry on oeis.org

5, 37, 157, 1277, 4441, 8669, 14533, 883241, 10006957, 530551397, 931953301, 931953301
Offset: 1

Views

Author

David Broadhurst, Feb 24 2009

Keywords

Comments

Prompted by a question from Shiv K. Gupta to the Number Theory mailing list.

Examples

			Comment from _M. F. Hasler_, Feb 24 2009:
The first sequence of 12 such primes is the one starting at a(12) =
931953301 = [27050, 14151]^2 ; area = 203431499448450450
931953389 = [26050, 15917]^2 ; area = 176325413694076350
931953397 = [25239, 17174]^2 ; area = 148267841956285170
931953409 = [24528, 18175]^2 ; area = 120941067830427600
931953433 = [30332, 3453 ]^2 ; area = 95111855933417940
931953437 = [23846, 19061]^2 ; area = 93319265825216970
931953469 = [30462, 2005 ]^2 ; area = 56429222392003890
931953509 = [30478, 1745 ]^2 ; area = 49241224048436490
931953569 = [30487, 1580 ]^2 ; area = 44651199683914740
931953637 = [22166, 20991]^2 ; area = 23594434443844350
931953709 = [30525 , 422 ]^2 ; area = 12000420304268550
931953733 = [21793, 21378]^2 ; area = 8346882442487610
		

Crossrefs

Cf. A145010, A002144, A002330, A002331. See A144960 for the actual primes.

Programs

  • PARI
    A144954( n, p=5, verbose=0, L=[0])={ for( i=1,n-1, while(( p=nextprime(p+2)) % 4 !=1,); mn=sum2sqr_prime(p); L=if( L[i] > A=mn[1]*mn[2]*abs(mn[1]^2-mn[2]^2), concat( L, A), i=0; [A]) ); for( i=0,n-1, i & while( 1 != (p=precprime(p-2)) % 4,); verbose & print( p" = " sum2sqr_prime(p) "^2 ; area = " L[n-i])); p} \\ M. F. Hasler, Feb 24 2009

Formula

a(n) = min { A002144(k) | A145010(k) > A145010(k+1) > ... > A145010(k+n-1)}. - M. F. Hasler, Feb 26 2009

A157184 Lesser of two Pythagorean primes for which the Pythagorean triangles have the same area.

Original entry on oeis.org

29, 109, 193, 541, 673, 709, 3257, 4201, 6217, 8269, 9109, 10957, 12637, 18013, 22717, 23557, 23689, 27329, 33413, 45553, 47737, 48889, 48953, 55001, 55117, 56473, 56737, 59509, 59921, 62297, 65393, 67061, 68909, 75577, 83477, 84221
Offset: 1

Views

Author

David Broadhurst, Feb 26 2009

Keywords

Programs

  • PARI
    {Q=Qfb(1,0,1); forprime(p=5,10^5, p%4==1|next; t=qfbsolve(Q,p); A=t[1]*t[2]*(t[1]^2-t[2]^2); fordiv( A,d, if( issquare(d^2+(2*A/d)^2,&q) && isprime(q) && q>p, print1(p", ");break)))}

Formula

A157184 = { A002144(k) | exists m>k : A145010(m)=A145010(k) }
Showing 1-2 of 2 results.