cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144960 Triangle of primes described in A144954, read by rows.

Original entry on oeis.org

5, 37, 41, 157, 173, 181, 1277, 1289, 1297, 1301, 4441, 4457, 4481, 4493, 4513, 8669, 8677, 8681, 8689, 8693, 8713, 14533, 14537, 14549, 14557, 14561, 14593, 14621, 883241, 883249, 883273, 883357, 883397, 883409, 883429, 883433
Offset: 1

Views

Author

David Broadhurst, Feb 24 2009

Keywords

Comments

Row 11 is a truncation of row 12.

Examples

			Triangle begins:
  [1, [5]],
  [2, [37, 41]],
  [3, [157, 173, 181]],
  [4, [1277, 1289, 1297, 1301]],
  [5, [4441, 4457, 4481, 4493, 4513]],
  [6, [8669, 8677, 8681, 8689, 8693, 8713]],
  [7, [14533, 14537, 14549, 14557, 14561, 14593, 14621]],
  [8, [883241, 883249, 883273, 883357, 883397, 883409, 883429, 883433]],
  [9, [10006957, 10006973, 10007021, 10007077, 10007161, 10007177, 10007201, 10007269, 10007273]],
  [10, [530551397, 530551457, 530551633, 530551669, 530551717, 530551733, 530551753, 530551757, 530551829, 530551841]],
  [11, [931953301, 931953389, 931953397, 931953409, 931953433, 931953437, 931953469, 931953509, 931953569, 931953637, 931953709]],
  [12, [931953301, 931953389, 931953397, 931953409, 931953433, 931953437, 931953469, 931953509, 931953569, 931953637, 931953709, 931953733]],
  ...
		

Crossrefs

Cf. A144954.

A070151 a(n) is one fourth of the even leg of the unique primitive Pythagorean triangle with hypotenuse A002144(n).

Original entry on oeis.org

1, 3, 2, 5, 3, 10, 7, 15, 12, 20, 18, 5, 15, 28, 22, 35, 33, 13, 45, 42, 7, 15, 52, 30, 8, 65, 63, 40, 17, 78, 77, 72, 45, 68, 63, 85, 57, 10, 30, 105, 102, 70, 42, 95, 55, 110, 105, 133, 130, 12, 92, 60, 153, 152, 50, 143, 75, 138, 13, 65, 165, 27, 117, 190, 150, 187, 143, 70
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2002

Keywords

Comments

Consider sequence A002144 of primes congruent to 1 (mod 4) and equal to x^2 + y^2, with y>x given by A002330 and A002331; sequence gives values x*y/2.

Examples

			The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
n = 7: a(7) = 7, A002144(7) = 53 and 53^2 = 2809 = A070079(7)^2 + (4*a(7))^2 = 45^2 + (4*7)^2 = 2025 + 784. - _Wolfdieter Lang_, Jan 13 2015
		

Crossrefs

Formula

a(n) = A002330(n+1)*A002331(n+1)/2. - David Wasserman, May 12 2003
4*a(n) is the even positive integer with A080109(n) = A002144(n)^2 = A070079(n)^2 + (4*a(n))^2 in this unique decomposition (up to order). See A080109 for references. - Wolfdieter Lang, Jan 13 2015

Extensions

Edited. New name, moved the old one to the comment section. - Wolfdieter Lang, Jan 13 2015

A145010 a(n) = area of Pythagorean triangle with hypotenuse p, where p = A002144(n) = n-th prime == 1 (mod 4).

Original entry on oeis.org

6, 30, 60, 210, 210, 180, 630, 330, 1320, 1560, 2340, 990, 2730, 840, 4620, 3570, 5610, 4290, 1710, 7980, 2730, 6630, 10920, 12540, 4080, 8970, 14490, 18480, 9690, 3900, 11550, 25200, 26910, 30600, 34650, 32130, 37050, 7980, 23460, 6090, 29580, 49140, 35700
Offset: 1

Views

Author

M. F. Hasler, Feb 24 2009

Keywords

Comments

Pythagorean primes, i.e., primes of the form p = 4k+1 = A002144(n), have exactly one representation as sum of two squares: A002144(n) = x^2+y^2 = A002330(n+1)^2+A002331(n+1)^2. The corresponding (primitive) integer-sided right triangle with sides { 2xy, |x^2-y^2| } = { A002365(n), A002366(n) } has area xy|x^2-y^2| = a(n). For n>1 this is a(n) = 30*A068386(n).

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
  ---------------------------------
   p  a  b  t_1  c   d t_2 t_3  t_4
  ---------------------------------
   5  1  2   1   3   4   4   3    6
  13  2  3   3   5  12  12   5   30
  17  1  4   2   8  15   8  15   60
  29  2  5   5  20  21  20  21  210
  37  1  6   3  12  35  12  35  210
  41  4  5  10   9  40  40   9  180
  53  2  7   7  28  45  28  45  630
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 500, p = NextPrime[p], If[Mod[p, 4] == 1, area = x*y/2 /. ToRules[Reduce[0 < x <= y && p^2 == x^2 + y^2, {x, y}, Integers]]; Sow[area]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2015 *)
  • PARI
    forprime(p=1,499, p%4==1 | next; t=[p,lift(-sqrt(Mod(-1,p)))]; while(t[1]^2>p,t=[t[2],t[1]%t[2]]); print1(t[1]*t[2]*(t[1]^2-t[2]^2)","))
    
  • PARI
    {Q=Qfb(1,0,1);forprime(p=1,499,p%4==1|next;t=qfbsolve(Q,p); print1(t[1]*t[2]*(t[1]^2-t[2]^2)","))} \\ David Broadhurst

Formula

a(n) = A002365(n)*A002366(n)/2.
a(n) = x*y*(x^2-y^2), where x = A002330(n+1), y = A002331(n+1).
Showing 1-3 of 3 results.