cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004611 Divisible only by primes congruent to 1 mod 3.

Original entry on oeis.org

1, 7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, 103, 109, 127, 133, 139, 151, 157, 163, 169, 181, 193, 199, 211, 217, 223, 229, 241, 247, 259, 271, 277, 283, 301, 307, 313, 331, 337, 343, 349, 361, 367, 373, 379, 397, 403, 409, 421, 427, 433, 439, 457
Offset: 1

Views

Author

Keywords

Comments

In other words, if a prime p divides n, then p == 1 mod 3.
Equivalently, products of primes == 1 (mod 6), products of elements of A002476.
Positive integers n such that n+d+1 is divisible by 3 for all divisors d of n. For example, a(13)=91 since 91=7*13, 91+1+1=93=3*31, 91+7+1=99=9*11, 91+13+1=105=3*7*5, 91+91+1=183=3*61. The only prime p such that x+d+1 is divisible by p for all divisors d of x is p=3. The sequence consists of 1 and all integers whose prime divisors are of the form 6k+1. - Walter Kehowski, Aug 09 2006
Also z such that z^2 = x^2 + x*y + y^2 and gcd(x,y,z) = 1. - Frank M Jackson, Jul 30 2013
From Jean-Christophe Hervé, Nov 24 2013: (Start)
Apart from the first term (for all in this comment), this sequence is the analog of A008846 (hypotenuses of primitive Pythagorean triangles) for triangles with integer sides and a 120-degree angle: a(n), n>1, is the sequence of lengths of the longest side of the primitive triangles.
Not only the square of these numbers is equal to x^2 + xy + y^2 with x and y > 0, but the numbers themselves also are; the sequence starting at n=2 is then a subsequence of A024606.
(End)
Numbers n such that 3/n cannot be written as the sum of 2 unit fractions. - Carl Schildkraut, Jul 19 2016
a(n), n>1, is the sequence of lengths of the middle side b of the primitive triangles such that A < B < C with an angle B = 60 degrees (A335895). Compare with comment of Nov 24 2013 where a(n), n>1, is the sequence of lengths of the longest side of the primitive triangles that have an angle = 120 degrees. - Bernard Schott, Mar 29 2021

Crossrefs

Multiplicative closure of A002476.

Programs

  • Magma
    [n: n in [1..500] | forall{d: d in PrimeDivisors(n) | d mod 3 eq 1}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    with(numtheory): for n from 1 to 1801 by 6 do it1 := ifactors(n)[2]: it2 := 1: for i from 1 to nops(it1) do if it1[i][1] mod 6 > 1 then it2 := 0; break fi: od: if it2=1 then printf(`%d,`,n) fi: od:
    with(numtheory): cnt:=0: L:=[]: for w to 1 do for n from 1 while cnt<100 do dn:=divisors(n); Q:=map(z-> n+z+1, dn); if andmap(z-> z mod 3 = 0, Q) then cnt:=cnt+1; L:=[op(L),[cnt,n]]; fi; od od; L; # Walter Kehowski, Aug 09 2006
  • Mathematica
    ok[1]=True;ok[n_]:=And@@(Mod[#,3]==1&)/@FactorInteger[n][[All,1]];Select[Range[500],ok] (* Vincenzo Librandi, Aug 21 2012 *)
    lst={}; maxLen=331; Do[If[Reduce[m^2+m*n+n^2==k^2&&m>=n>=0&&GCD[k, m, n]==1, {m, n}, Integers]===False, Null[], AppendTo[lst, k]], {k, maxLen}]; lst (* Frank M Jackson, Jul 04 2013 from A034017 *)
  • PARI
    is(n)=my(f=factor(n)[,1]);for(i=1,#f,if(f[i]%3!=1,return(0)));1 \\ Charles R Greathouse IV, Feb 06 2013
    
  • PARI
    list(lim)=my(v=List([1]), mn, mx, t); forprime(p=7, lim\=1, if(p%6==1, listput(v, p))); if(lim<49, return(Vec(v))); forprime(p=7, sqrtint(lim), if(p%6>1, next); mx=1; while(v[mx+1]*p<=lim, for(i=mn=mx+1, mx=#v, t=p*v[i]; if(t>lim, break); listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Jan 11 2018

Extensions

More terms from James Sellers, Oct 30 2000
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007