A004720 Delete all digits '1' from the sequence of nonnegative integers.
0, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 3, 4, 5, 6, 7, 8, 9, 20, 2, 22, 23, 24, 25, 26, 27, 28, 29, 30, 3, 32, 33, 34, 35, 36, 37, 38, 39, 40, 4, 42, 43, 44, 45, 46, 47, 48, 49, 50, 5, 52, 53, 54, 55, 56, 57, 58, 59, 60, 6, 62, 63, 64, 65, 66, 67, 68, 69, 70, 7, 72, 73, 74, 75
Offset: 1
Examples
The first nonnegative integer, 0, remains as a(1). The second nonnegative integer, 1, completely disappears upon removal of the digit 1. The third nonnegative integer, 2, remains as a(2). The number 10 becomes a(10)=0. The number 11 completely disappears upon removal of both its digits '1'. The number 12 becomes a(11)=2.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:= proc(n) local L,i; L:= subs(1=NULL, convert(n,base,10)); if L = [] then NULL else add(L[i]*10^(i-1),i=1..nops(L)) fi end proc: map(f, [$0..100]); # Robert Israel, Feb 07 2016
-
Mathematica
f[n_] := Block[{a = DeleteCases[ IntegerDigits[n], 1]}, If[a != {}, FromDigits@ a, b]]; DeleteCases[ Array[f, 75, 0], b] (* Robert G. Wilson v, Feb 05 2016 *)
-
PARI
for(n=0,99,if(t=select(d->d!="1",Vec(Str(n))),print1(concat(t)","))) \\ M. F. Hasler, Feb 01 2016
-
Python
def A004720(n): l = len(str(n-1)) m = (10**l-1)//9 k = n + l - 2 + int(n+l-1 >= m) return 0 if k == m else int(str(k).replace('1','')) # Chai Wah Wu, Apr 20 2021
Extensions
Corrected by T. D. Noe, Sep 19 2008
Entry revised by N. J. A. Sloane and M. F. Hasler following a suggestion from Sean A. Irvine, Feb 01 2016
Comments